精英家教网 > 高中数学 > 题目详情
8.已知直线l和曲线Γ的极坐标方程分别为ρ(sinθ-cosθ)=1和ρ=1,若l和Γ相交于两点A,B,则|AB|=$\sqrt{2}$.

分析 把极坐标方程化为直角方程,求出圆心到直线的距离d,利用弦长公式|AB|=2$\sqrt{{r}^{2}-{d}^{2}}$,即可得出.

解答 解:直线l:ρ(sinθ-cosθ)=1化为y-x=1,
曲线Γ:ρ=1,化为x2+y2=1,
∴圆心到直线的距离d=$\frac{1}{\sqrt{2}}$,
∴|AB|=2$\sqrt{{r}^{2}-{d}^{2}}$=2$\sqrt{1-(\frac{1}{\sqrt{2}})^{2}}$=$\sqrt{2}$.
故答案为:$\sqrt{2}$.

点评 本题考查了把极坐标方程化为直角方程、点到直线的距离公式、弦长公式|AB|=2$\sqrt{{r}^{2}-{d}^{2}}$,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知在△ABC中,a2+c2=2b2,其中a、b、c分别为∠A、∠B、∠C所对的边长,求∠B的范围;若∠B=45°,求∠A.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知曲线C:x2+y2=1,将曲线C上的点按坐标变换$\left\{\begin{array}{l}{x′=2x}\\{y′=3y}\end{array}\right.$得到曲线C′;以直角坐标系原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标系方程是ρ(2cosθ+sinθ)=10.
(1)写出曲线C′和直线l的普通方程;
(2)求曲线C′上的点M到直线l距离的最大值及此时点M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}前n项和为Sn,满足Sn=2an-2n(n∈N*).
(I)证明:{an+2}是等比数列,并求{an}的通项公式;
(Ⅱ)数列{bn}满足bn=log2(an+2),Tn为数列{$\frac{1}{{b}_{n}{b}_{n+1}}$}的前n项和,若Tn<a对正整数a都成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x2-ax+lnx,a∈R.
(Ⅰ)若函数f(x)在(1,f(1))处的切线垂直于y轴,求实数a的值;
(Ⅱ) 在(I)的条件下,求函数f(x)的单调区间;
(Ⅲ) 若x>1时,f(x)>0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若对任意非负实数x都有$({x-m})•{e^{-x}}-\sqrt{x}<0$,则实数m的取值范围为(  )
A.(0,+∞)B.(-∞,0)C.$(-∞,-\frac{1}{e})$D.$(-\frac{1}{e},e)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设R为实数集,集合A={x|x2>4},B={x|x2-4x+3<0},则∁R(A∩B}=(  )
A.{x|x≤-2或x≥2}B.{x|1<x≤2}C.{x|x≤2或x≥3}D.{x|x≤1或x≥3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列四个命题:
①“ax<ay(0<a<1)”成立的充要条件是“ln(x2+1)>ln(y2+1)”;
②命题“若x>y,则-x<-y”的逆否命题是“若-x>-y,则x<y”;
③设$\overrightarrow a,\overrightarrow b$是任意两个向量,则“$\overrightarrow a•\overrightarrow b=|\overrightarrow a||\overrightarrow b|$”是“$\overrightarrow a∥\overrightarrow b$”的充分不必要条件;
④把函数y=sin(-2x)(x∈R)的图象上所有的点向右平移$\frac{π}{8}$个单位即可得到函数$y=sin({-2x+\frac{π}{4}})$(x∈R)的图象.
其中正确命题的个数是(  )
A.0B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在以为极点,x轴的正半轴为极轴,且单位长度相同的极坐标系中,已知两点A(3,$\frac{π}{3}$)、B(4,$\frac{11π}{6}$).
(1)求A,B之间的距离;
(2)求直线AB的极坐标方程.

查看答案和解析>>

同步练习册答案