精英家教网 > 高中数学 > 题目详情
16.已知数列{an}前n项和为Sn,满足Sn=2an-2n(n∈N*).
(I)证明:{an+2}是等比数列,并求{an}的通项公式;
(Ⅱ)数列{bn}满足bn=log2(an+2),Tn为数列{$\frac{1}{{b}_{n}{b}_{n+1}}$}的前n项和,若Tn<a对正整数a都成立,求a的取值范围.

分析 (Ⅰ)运用数列的通项和前n项和的关系,变形整理即可得到{an+2}是等比数列,由等比数列的通项公式,即可求得;
(Ⅱ)运用对数的运算性质,化简bn,再由裂项相消求和,即可得到Tn,运用不等式恒成立思想即可得到a的范围.

解答 (Ⅰ)证明:由题设Sn=2an-2n(n∈N*),
Sn-1=2an-1-2(n-1),n≥2,
两式相减得an=2an-1+2,
即an+2=2(an-1+2),
又a1+2=4,
所以{an+2}是以4为首项,2为公比的等比数列,
an+2=4•2n-1,即an=2n+1-2(n≥2)
又a1=2,所以an=2n+1-2(n∈N*);
(Ⅱ)解:因为bn=log2(an+2)=log22n+1=n+1,
即有$\frac{1}{{b}_{n}{b}_{n+1}}$=$\frac{1}{(n+1)(n+2)}$=$\frac{1}{n+1}$-$\frac{1}{n+2}$,
故Tn=$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{n+1}$-$\frac{1}{n+2}$=$\frac{1}{2}$-$\frac{1}{n+2}$<$\frac{1}{2}$,
依题意得:a≥$\frac{1}{2}$.

点评 本题考查等比数列的通项公式和数列求和的方法:裂项相消求和,同时考查不等式恒成立思想转化为最值,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知角α的终边在第二象限,且sinα=$\frac{4}{5}$,则tanα等于(  )
A.$\frac{3}{4}$B.-$\frac{3}{4}$C.$\frac{4}{3}$D.-$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.一个几何体的三视图如图所示(单位:cm),则该几何体的体积为$\frac{28}{3}π$cm3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.圆周上有2n个等分点(n>2),任取3点可得一个三角形,恰为直角三角形的个数为2n(n-1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.△ABC的内角A,B,C的对边分别为a,b,c,且a,b,c成等比数列.若sinB=$\frac{5}{13}$,cosB=$\frac{12}{ac}$,则a+c=(  )
A.$\sqrt{37}$B.$\sqrt{13}$C.3$\sqrt{7}$D.2$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数y=f(x)(x∈R)是奇函数,其部分图象如图所示,则在(-2,0)上与函数
f(x)的单调性相同的是(  )
A.y=x2+1B.y=log2|x|
C.$y=\left\{\begin{array}{l}{e^x}(x≥0)\\{e^{-x}}(x<0)\end{array}\right.$D.y=cosx

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知直线l和曲线Γ的极坐标方程分别为ρ(sinθ-cosθ)=1和ρ=1,若l和Γ相交于两点A,B,则|AB|=$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.己知二次函数f(x)=ax2+bx+1,其中a,b∈R,g(x)=ln(ex),且函数F(x)=f(x)-g(x)在x=1处取得极值.
(Ⅰ)求a,b所满足的关系;
(Ⅱ)试判断是否存在a∈(-2,0)∪(0,2),使得对?x∈[1,2],不等式(x+a)F(x)≥0恒成立?如果存在,请求出符合条件的a的所有值;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数$f(x)=x\sqrt{{x^2}-2ax+{a^2}}-1,(a∈R)$
(1)当a=1时,解不等式f(x)<x-1;
(2)当a>0时,求函数f(x)的单调区间;
(3)若在区间(0,1]上,函数f(x)的图象总在直线y=m(m∈R,m是常数)的下方,求a的取值范围.

查看答案和解析>>

同步练习册答案