精英家教网 > 高中数学 > 题目详情
在△ABC中,已知∠A,∠B,∠C的对边长分别为a,b,c,且S△ABC=a2-(b-c)2,则tan
A
2
=
 
考点:余弦定理,正弦定理
专题:三角函数的求值
分析:已知等式左边利用三角形面积公式化简,左边先利用完全平方公式展开,并利用余弦定理变形,再根据二倍角的正弦、余弦函数公式及同角三角函数间基本关系化简即可求出tan
A
2
解答: 解:∵S△ABC=a2-(b-c)2,S△ABC=
1
2
bcsinA,2bccosA=b2+c2-a2
1
2
bcsinA=a2-(b-c)2=a2-b2-c2+2bc=2bc-(b2+c2-a2)=2bc-2bccosA,
整理得:
1
2
sinA=2-2cosA,即sinA=4-4cosA=4(1-cosA),
整理得:2sin
A
2
cos
A
2
=4×2sin2
A
2
,即cos
A
2
=4sin
A
2

则tan
A
2
=
1
4

故答案为:
1
4
点评:此题考查了余弦定理,三角形面积公式,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD于点E,DA平分∠BDE.
(1)证明:AE是⊙O的切线;
(2)如果AB=4,AE=2,求CD.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(-
1
2
,2cosx),
n
=(cos2x+
3
sin2x,cosx),记函数f(x)=
m
n

(Ⅰ)求f(x)的最小正周期及单调减区间;
(Ⅱ)记△ABC的内角A、B、C的对边长分别为a、b、c,若f(
B
2
)=1,b=3,c=2,求sinA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

101(2)转化为十进制数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题:“?x∈[-2,1],使x2+2x+a≥0”为真命题,则a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

二次函数y=ax2的图象是开口向上的抛物线,其焦点到准线的距离为2,则a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,B=3A,则
b
a
的范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知xy-z=0,且0<
y
z
1
2
,则
xz2-4yz
x2z2+16y2
的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列各数210(6),100(4),111111(2)中最小的数是
 

查看答案和解析>>

同步练习册答案