精英家教网 > 高中数学 > 题目详情
3.若函数f(x)满足:对定义域中的任意x都有f(x)≥f(2),能说明函数f(x)的最小值是f(2)吗?

分析 由最小值的定义:设函数y=f(x)的定义域为I,如果存在实数M满足:①对于任意实数x∈I,都有f(x)≥M,②存在x0∈I.使得f(x0)=M,那么我们称实数M是函数y=f(x)的最小值.即可判断.

解答 解:设函数y=f(x)的定义域为I,如果存在实数M满足:①对于任意实数x∈I,都有f(x)≥M,
②存在x0∈I.使得f(x0)=M,那么我们称实数M是函数y=f(x)的最小值.
由题意函数f(x)满足:对定义域中的任意x都有f(x)≥f(2),
则函数的最小值为f(2).

点评 本题考查喊话说的最值的定义,注意考虑定义域,属于基础题和易错题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=ln(1+x)-$\frac{ax}{x+2}$.
(Ⅰ)当a=0时,求曲线y=f(x)在原点处的切线方程;
(Ⅱ)当a>0时,讨论函数f(x)在区间(0,+∞)上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.曲线y=$\frac{1}{3}$x3-x2+2上有A,B两点,其中A(0,2),且曲线在A,B两点处的切线的倾斜角相差135°,则B点的坐标是(  )
A.(1,$\frac{4}{3}$)B.(2,$\frac{2}{3}$)C.(-1,$\frac{2}{3}$)D.(-2,-$\frac{14}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(n)满足f(n+1)=$\left\{\begin{array}{l}{2f(n),0≤f(n)<\frac{1}{2}}\\{2f(n)-1,\frac{1}{2}≤f(n)<1}\end{array}\right.$ 其中n∈N*.若f(1)=$\frac{6}{7}$,求 f(20)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设命题p:实数x满足x2-2x+1-m2≤0,其中m>0,命题q:$\frac{12}{x+2}$≥1.
(Ⅰ)若m=2且p∨q为真命题,求实数x的取值范围;
(Ⅱ)若¬q是¬p的充分不必要条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.奇函数f(x)在(0,+∞)上单调递减且f(-2)=0,则满足xf(x)>0的x的范围是(  )
A.x<-2或0<x<2B.x<-2或x>2C.-2<x<0或0<x<2D.-2<x<0或x>2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数y=$\frac{{x}^{2}-x+3}{x}$的值域为{y|y≥2$\sqrt{3}$-1,或y≤-2$\sqrt{3}$-1}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.给出下列函数:①f(x)=$\sqrt{-2{x}^{3}}$与g(x)=x$\sqrt{-2x}$;②f(x)=x0与g(x)=$\frac{1}{{x}^{0}}$;③f(x)=x2-2x-1与f(t)=t2-2t-1.其中表示同一函数的有②③(填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知单调递增数列{an}的前n项和为Sn,满足Sn=$\frac{1}{2}$(a${\;}_{n}^{2}$+n).
(1)求数列{an}的通项公式;
(2)设cn=$\left\{\begin{array}{l}{\frac{1}{{a}_{n+1}^{2}-1}}&{n为奇数}\\{3×{2}^{{a}_{n-1}}+1}&{n为偶数}\end{array}\right.$,求数列{cn}的前n项和Tn

查看答案和解析>>

同步练习册答案