精英家教网 > 高中数学 > 题目详情
8.下列命题中正确的是(  )
A.若直线a在平面α外,则直线a与平面内任何一点都只可以确定一个平面
B.若a,b分别与两条异面直线都相交,则a,b是异面直线
C.若直线a平行于直线b,则a平行于过b的任何一个平面
D.若a,b是异面直线,则经过a且与b垂直的平面可能不存在

分析 根据空间直线和平面的位置关系分别进行判断即可得到结论.

解答 解:A.当直线a与α相交时,设a∩α=A,当直线a与平面内内的点A时,此时有无数个平面,故A错误,
B.若a,b分别与两条异面直线都相交,则a,b是异面直线或者a,b相交,故B错误,
C.若直线a平行于直线b,则a平行于过b的任何一个平面或a在过b的平面内,故C错误,
D.如果直线a与直线b垂直时,根据线面垂直的判定定理可知存在唯一一个平面满足条件;
当直线a与直线b不垂直时,如果找到过a且与b垂直的平面,则b垂直平面内任一直线,而a在平面内,则直线a与直线b垂直,这与条件矛盾,故不存在,
故若a,b是异面直线,则经过a且与b垂直的平面可能不存在,正确,
故选:D.

点评 本题主要考查命题的真假判断,根据空间直线和平面的位置关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知$\overrightarrow a=(-1,\;3)$,$\overrightarrow b=(1,\;-1)$,那么$\overrightarrow a,\overrightarrow b$夹角的余弦值(  )
A.$-\frac{{2\sqrt{5}}}{5}$B.$-\frac{{\sqrt{5}}}{5}$C.-2D.-$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.石嘴山市在每年的春节后,市政府都会发动公务员参与到植树活动中去.林管部门在植树前,为保证树苗的质量,都会在植树前对树苗进行检测.现从甲乙两种树苗中各抽测了10株树苗的高度,量出的高度如下(单位:厘米)
甲:37,21,31,20,29,19,32,23,25,33
乙:10,30,47,27,46,14,26,10,44,46
(1)根据抽测结果,完成答题卷中的茎叶图(图1),并根据你填写的茎叶图,对甲、乙两种树苗的高度作比较,写出两个统计结论;
(2)设抽测的10株甲种树苗高度平均值为$\overline x$,将这10株树苗的高度依次输入按程序框图(图2)进行的运算,问输出的S大小为多少?并说明S的统计学意义.
(3)现从10株甲种树苗中随机抽取两株高度不低于25cm的树苗,求高度为33cm的树苗被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设命题p:若实数x满足x2-4ax+3a2≤0,其中a>0;命题q:实数x满足$\left\{\begin{array}{l}{x^2}-x-6≤0\\{x^2}+2x-8≥0\end{array}\right.$
(1)若a=1且p∧q为真,求实数x的取值范围;
(2)若¬p是¬q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=2sin2x+2$\sqrt{3}sin(2x-\frac{3π}{2})$,则f(x)的图象对称中心坐标为($\frac{kπ}{2}$-$\frac{π}{6}$,0),k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,某地夏天从8~14时用电量变化曲线近似满足函数y=Asin(ωx+φ)+b(ω>0,0<φ<π).
(1)指出这一时间段的最大用电量及最小用电量;
(2)求出A,ω,φ,b的值,写出这段曲线的函数解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若x,y满足约束条件$\left\{{\begin{array}{l}{y-x≤1}\\{x+y≤3}\\{y≥1}\end{array}}\right.$,则$z=\frac{y}{x+2}$的最大值为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知扇形的圆心角为2弧度,面积为4,则该扇形的弧长为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知α,β都是锐角,sinα=$\frac{3}{5}$,tan(α-β)=-$\frac{1}{3}$,求tanβ的值.

查看答案和解析>>

同步练习册答案