精英家教网 > 高中数学 > 题目详情
2.若“0≤x≤1”是“(x-a)[x-(a+2)]≤0”的充分不必要条件,则实数a的取值范围是(  )
A.(-∞,0]∪[1,+∞)B.[-1,0]C.(-1,0)D.(-∞,-1)∪(0,+∞)

分析 先求出不等式的 等价条件,根据充分不必要条件的定义进行判断即可.

解答 解:由(x-a)[x-(a+2)]≤0得a≤x≤a+2,
要使“0≤x≤1”是“(x-a)[x-(a+2)]≤0”的充分不必要条件,
则 $\left\{\begin{array}{l}{a+2≥1}\\{a≤0}\end{array}\right.$,即 $\left\{\begin{array}{l}{a≥-1}\\{a≤0}\end{array}\right.$,
∴-1≤a≤0,
故选:B.

点评 本题主要考查充分条件和必要条件的应用,根据不等式之间的关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.设k=${∫}_{0}^{π}$(sinx-cosx)dx,若(1-kx)8=a0+a1x+a2x2+…+a8x8,则a1+a2+a3+…+a8=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设椭圆E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)过A(0,-1),焦点为F1,F2,椭圆E上满足MF1⊥MF2的点M有且仅有两个.
(1)求椭圆E的方程及离心率e;
(2)经过点(1,1),且斜率为k的直线与椭圆E交于不同两点P,Q(均异于点A),证明:直线AP与AQ的斜率之和为常数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.集合A={x|-1<x<7},B={x|2<x<10},求A∩B,A∪B.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.A、B、C是三个命题,如果A是B的充要条件,C是B的充分不必要条件,则C是A的充分条件.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知f(x)是定义在R上不恒为零的函数,对于任意的x,y∈R,都有f(x•y)=xf(y)+yf(x)成立.数列{an}满足an=f(3n)(n∈N+),且a1=3,则数列的通项公式为an=n•3n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数y=g(x)的图象是由函数f(x)=sinx-$\sqrt{3}$cosx的图象向左平移$\frac{π}{3}$个单位而得到的,则函数y=g(x)的图象与直线x=0,x=$\frac{2π}{3}$,x轴围成的封闭图形的面积为(  )
A.πB.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在三棱锥P-ABC中,底面ABC为直角三角形,AB=BC,PA⊥平面ABC.
(1)证明:BC⊥PB;
(2)若D为AC的中点,且PA=4,AB=2$\sqrt{2}$,求点D到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=|xex+1|,关于x的方程f2(x)+2sinα•f(x)+cosα=0有四个不等实根,sinα-cosα≥λ恒成立,则实数λ的最大值为(  )
A.-$\frac{7}{5}$B.-$\frac{1}{2}$C.-$\sqrt{2}$D.-1

查看答案和解析>>

同步练习册答案