【题目】某学校为更好进行校纪、校风管理,争创文明学校,由志愿者组成“小红帽”监督岗,对全校的不文明行为进行监督管理,对有不文明行为者进行批评教育,并作详细的登记,以便跟踪调查下表是
个周内不文明行为人次统计数据:
周次 |
|
|
|
|
|
不文明行为人次 |
|
|
|
|
|
(1)请利用所给数据求不文明人次
与周次
之间的回归直线方程
,并预测该学校第
周的不文明人次;
(2)从第
周到第
周记录得知,高一年级有
位同学,高二年级有
位同学已经有
次不文明行为.学校德育处决定先从这
人中任选
人进行重点教育,求抽到的两人恰好来自同一年级的概率
参考公式:
,![]()
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知点A1,A2,…,An,…B1,B2,…,Bn,…均在抛物线x=y2上,线段AnBn与x轴的交点为Hn.将△OA1B1,△H1A2B2,…,△HnAn+1Bn+1,…的面积分别记为S1,S2,…,Sn+1,….已知上述三角形均为等腰直角三角形,且它们的顶角分别为O,H1,…,Hn,….
![]()
(1)求S1和S2的值;
(2)证明:n≤sn≤n2.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义函数f(x)=(1﹣x2)(x2+bx+c).
(1)如果f(x)的图象关于x=2对称,求2b+c的值;
(2)若x∈[﹣1,1],记|f(x)|的最大值为M(b,c),当b、c变化时,求M(b,c)的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,点
是椭圆
上的点.
(1)求椭圆
的标准方程;
(2)已知斜率存在又不经过原点的直线
与圆
相切,且与椭圆
交于
两点.探究:在椭圆
上是否存在点
,使得
,若存在,请求出实数
的取值范围,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某大学棋艺协会定期举办“以棋会友”的竞赛活动,分别包括“中国象棋”、“围棋”、“五子棋”、“国际象棋”四种比赛,每位协会会员必须参加其中的两种棋类比赛,且各队员之间参加比赛相互独立;已知甲同学必选“中国象棋”,不选“国际象棋”,乙同学从四种比赛中任选两种参与.
(1)求甲参加围棋比赛的概率;
(2)求甲、乙两人参与的两种比赛都不同的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某种植物感染
病毒极易导致死亡,某生物研究所为此推出了一种抗
病毒的制剂,现对
株感染了
病毒的该植株样本进行喷雾试验测试药效.测试结果分“植株死亡”和“植株存活”两个结果进行统计;并对植株吸收制剂的量(单位:
)进行统计规定:植株吸收在
(包括
)以上为“足量”,否则为“不足量”.现对该
株植株样本进行统计,其中“植株存活”的
株,对制剂吸收量统计得下表.已知“植株存活”但“制剂吸收不足量”的植株共
株.
编号 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
吸收量 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(1)完成以
下列联表,并判断是否可以在犯错误概率不超过
的前提下,认为“植株的存活”与“制剂吸收足量”有关?
吸收足量 | 吸收不足量 | 合计 | |
植株存活 |
| ||
植株死亡 | |||
合计 |
|
(2)若在该样本“制剂吸收不足量”的植株中随机抽取
株,求这
株中恰有
株“植株存活”的概率.
参考数据:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
,其中![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
是抛物线
的焦点,恰好又是双曲线
的右焦点,双曲线
过点
,且其离心率为
.
(1)求抛物线
和双曲线
的标准方程;
(2)已知直线
过点
,且与抛物线
交于
,
两点,以
为直径作圆
,设圆
与
轴交于点
,
,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中石化集团通过与安哥拉国家石油公司合作,获得了安哥拉深海油田区块的开采权,集团在某些区块随机初步勘探了部分旧井,取得了地质资料.进入全面勘探时期后集团按网络点来布置井位来进行全面勘探.由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口新井,以节约勘探费用.勘探初期数据资料见下表:
井位 | 1 | 2 | 3 | 4 | 5 | 6 |
坐标 |
|
|
|
|
|
|
钻探深度 | 2 | 4 | 5 | 6 | 8 | 10 |
出油量 | 40 | 70 | 110 | 90 | 160 | 205 |
(1)若1
6号旧井位置满足线性分布,借助前5组数据所求得的回归直线方程为
,且
,求
,并估计
的预报值;
(2)现准备勘探新井7(1,25),若通过,1,3,5,7号井计算出的
,
的值与(1)中
,
的值的差不超过10%,则使用位置最接近的旧井
,否则在新位置打井,请判断可否使用旧井?(注:其中
的计算结果用四舍五入法保留一位小数)
参考数据:![]()
参考公式:![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com