精英家教网 > 高中数学 > 题目详情

【题目】已知数列{an}的前n项和为Sn , a1=a, ,an+2=an+1﹣an , S56=6,则a=

【答案】﹣3或2
【解析】解:由an+1=an﹣an1(n≥2),得 an+6=an+5﹣an+4=an+4﹣an+3﹣an+4=﹣an+3=﹣(an+2﹣an+1)=﹣(an+1﹣an﹣an+1)=an
所以6为数列{an}的周期,
又a3=a2﹣a1=a2﹣a,a4=a3﹣a2=﹣a,a5=a4﹣a3=﹣a2 , a6=a5﹣a4=a﹣a2
∴S6=0.
∵S56=6,∴S56=S54+a+a2=a+a2=6,解得a=﹣3或2.
所以答案是:﹣3或2.
【考点精析】关于本题考查的数列的通项公式,需要了解如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列四个命题中错误的是(
A.在一次试卷分析中,从每个考室中抽取第5号考生的成绩进行统计,不是简单随机抽样
B.对一个样本容量为100的数据分组,各组的频数如下:

区间

[17,19)

[19,21)

[21,23)

[23,25)

[25,27)

[27,29)

[29,31)

[31,33]

频数

1

1

3

3

18

16

28

30

估计小于29的数据大约占总体的58%
C.设产品产量与产品质量之间的线性相关系数为﹣0.91,这说明二者存在着高度相关
D.通过随机询问110名性别不同的行人,对过马路是愿意走斑马线还是愿意走人行天桥进行抽样调查,得到如表列联表:

总计

走天桥

40

20

60

走斑马线

20

30

50

总计

60

50

110

,则有99%以上的把握认为“选择过马路方式与性别有关”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=f(x)的导函数y=f′(x)的图象如图,则(
A.函数f(x)有1个极大值点,1个极小值点
B.函数f(x)有2个极大值点,2个极小值点
C.函数f(x)有3个极大值点,1个极小值点
D.函数f(x)有1个极大值点,3个极小值点

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】200名职工年龄分布如图所示,从中随机抽取40名职工作样本,采用系统抽样方式,按1~200编号分为40组,分别为1~5,6~10,…,196~200,第5组抽取号码为23,第9组抽取号码为;若采用分层抽样,40﹣50岁年龄段应抽取人.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 且Sn=2an﹣3n(n∈N+).
(1)求a1 , a2 , a3的值;
(2)设bn=an+3,证明数列{bn}为等比数列,并求通项公式an

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,函数f(x)=2cosxsin(x﹣A)+sinA(x∈R)在x= 处取得最大值.
(1)当 时,求函数f(x)的值域;
(2)若a=7且sinB+sinC= ,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的定义域为(﹣1,1),且同时满足下列条件:
①f(x)是奇函数;
②f(x)在定义域上单调递减;
③f(1﹣a)+f(1﹣a2)<0.
求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的首项a1=1,且an+1=2an+1(n∈N*
(Ⅰ)证明数列{an+1}是等比数列,并求数列{an}的通项公式;
(Ⅱ)设bn= ,求数列{bn}的前n项和Sn
(Ⅲ)在条件(Ⅱ)下对任意正整数n,不等式Sn+ ﹣1>(﹣1)na恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线 =1(a>0,b>0)的左、右焦点分别为F1、F2 , 过点F1且垂直于x轴的直线与该双曲线的左支交于A、B两点,AF2、BF2分别交y轴于P、Q两点,若△PQF2的周长为12,则ab取得最大值时该双曲线的离心率为(
A.
B.
C.2
D.

查看答案和解析>>

同步练习册答案