精英家教网 > 高中数学 > 题目详情
5.如图,一艘船现在灯塔C北偏东75°的点A且AC=3海里,当船航行了$\sqrt{21}$海里后到达点B,若点B在灯塔C西偏北15°方向上,则B,C两点的距离为$\sqrt{3}$海里.

分析 使用正弦定理解出sinB,根据内角和定理得出sinA,再次使用正弦定理解出BC.

解答 解:由题意知∠ACB=75°+75°=150°,AC=3,AB=$\sqrt{21}$.
由正弦定理得$\frac{AB}{sin∠ACB}=\frac{AC}{sinB}$,即$\frac{\sqrt{21}}{sin150°}=\frac{3}{sinB}$,解得sinB=$\frac{\sqrt{21}}{14}$.
∴cosB=$\sqrt{1-si{n}^{2}B}$=$\frac{5\sqrt{7}}{14}$.
∴sinA=sin(B+C)=sinBcosC+cosBsinC=$\frac{\sqrt{7}}{14}$.
由正弦定理得$\frac{BC}{sinA}=\frac{AB}{sin∠ACB}$,即$\frac{BC}{\frac{\sqrt{7}}{14}}=\frac{\sqrt{21}}{\frac{1}{2}}$,解得BC=$\sqrt{3}$.
故答案为$\sqrt{3}$海里.

点评 本题考查了正弦定理在解三角形的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.曲线f(x)=2-xex在点(0,2)处的切线方程为x+y-2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.求数列$\frac{1}{1+\sqrt{3}}$,$\frac{1}{\sqrt{2}+2}$,…,$\frac{1}{\sqrt{n}+\sqrt{n+2}}$,…的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知直线l1:2x-(a-1)y+1=0,l2:2ax+(a+1)y+a=0(a∈R).
(1)若直线l1的倾斜角是直线l2的倾斜角的一半,求a值;
(2)若直线l1,l2与y轴围成的三角形面积为$\frac{1}{2}$.求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=x+ln(x-1),则函数y=f(2x)定义域为(  )
A.{x|x>1}B.{x|x<1}C.{x|x>0}D.{x|x<0}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.(1)计算$\frac{2{A}_{8}^{5}+7{A}_{8}^{4}}{{A}_{8}^{8}-{A}_{9}^{5}}$
(2)求证:A${\;}_{n+1}^{m}$=mA${\;}_{n}^{m-1}$+A${\;}_{n}^{m}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设x2-2x+a-8≤0对于一切x∈(1,3)都成立,求a的范围(-∞,9].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.等比数列{an}的前n项和为Sn,已知对任意的n∈N*,点(n,Sn)均在函数y=2n+r(r为常数)的图象上,记bn=2(log2an+1)(n∈N*).
(1)求数列{an},{bn}的通项公式.
(2)若数列{cn}满足cn=$\frac{{{b}_{n}}^{2}+1}{{{b}_{n}}^{2}-1}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知复数z满足(1-i)z=i2016(其中i为虚数单位),则复数z的共扼复数$\overline{z}$的对应点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步练习册答案