精英家教网 > 高中数学 > 题目详情
已知集合Tn={X|X=(x1x2,…,xn),xiN*,i=1,2,…,n} (n≥2).对于A=(a1,a2,…,an),B=(b1,b2,…,bn)∈Tn,定义;
AB
=(b1-a1b2-a2,…,bn-an)
,λ(a1,a2,…,an)=(λa1,λa2,…,λan)(λ∈R);A与B之间的距离为d(A,B)=
n
i=1
|ai-bi|

(Ⅰ)当n=5时,设A=(1,2,1,2,a5),B=(2,4,2,1,3).若d(A,B)=7,求a5
(Ⅱ)证明:若A,B,C∈Tn,且?λ>0,使
AB
BC
,则d(A,B)+d(B,C)=d(A,C);
(Ⅲ)记I=(1,1,…,1)∈Tn.若A,B∈Tn,且d(I,A)=d(I,B)=p,求d(A,B)的最大值.
考点:进行简单的合情推理
专题:综合题,新定义
分析:(Ⅰ)直接利用新定义运算,结合d(A,B)=7,把A=(1,2,1,2,a5),B=(2,4,2,1,3)代入A与B之间的距离d(A,B)=
n
i=1
|ai-bi|
,即可求解a5的值;
(Ⅱ)利用新定义,结合
AB
BC
,即可怎么d(A,B)+d(B,C)=d(A,C);
(Ⅲ)由d(I,A)=d(I,B)=P,得到|a1-1|+|a2-1|+|a3-1|+…+|an-1|=P,|b1-1|+|b2-1|+|b3-1|+…+|bn-1|=P.然后把d(A,B)=|a1-b1|+|a2-b2|+|a3-b3|+…+|an-bn|,利用绝对值不等式放缩得答案.
解答: (Ⅰ)解:A=(1,2,1,2,a5),B=(2,4,2,1,3).
d(A,B)=
n
i=1
|ai-bi|
=7,
得d(A,B)=|1-2|+|2-4|+|1-2|+|2-1|+|a5-3|=5+|a5-3|=7.
∴|a5-3|=2,
解得:a5=1或a5=5;
(Ⅱ)证明:设A=(a1,a2,…,an),B=(b1,b2,…,bn),C=(c1,c2,…,cn)∈Tn
AB
BC

AB
=(b1-a1b2-a2,…,bn-an)
=λ(c1-b1,c2-b2,…,cn-bn),
∵d(A,B)+d(B,C)=
n
i=1
|ai-bi|
+
n
i=1
|bi-ci|
,d(A,C)=
n
i=
|ai-ci|

∴d(A,B)+d(B,C)=d(A,C);
(Ⅲ)解:∵I=(1,1,…,1),A=(a1,a2,…an),B=(b1,b2,…,bn),
由d(I,A)=d(I,B)=P,
得|a1-1|+|a2-1|+|a3-1|+…+|an-1|=P,
|b1-1|+|b2-1|+|b3-1|+…+|bn-1|=P.
∴d(A,B)=|a1-b1|+|a2-b2|+|a3-b3|+…+|an-bn|
=|(a1-1)-(b1-1)|+|(a2-1)-(b2-1)|+|(a3-1)-(b3-1)|+…+|(an-1)-(bn-1)|
≤|a1-1|+|b1-1|+|a2-1|+|b2-1|+…+|an-1|+|bn-1|=2P.
∴d(A,B)的最大值为2P.
点评:本题是新定义题,考查了两点间的距离公式,训练了绝对值不等式的应用,解答的关键是对题意的理解,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下面给出四个命题:
①若a≥b>-1,则
a
1+a
b
1+b

②a<-1是一元二次方程ax2+2x+1=0有一个正根和一个负根的充分不必要条件;
③在数列{an}中,a1<a2<a3是数列{an}为递增数列的必要不充分条件;
④方程(x+y-2)
x2+y2-9
=0
表示的曲线是一个圆和一条直线.
其中为真命题的是(  )
A、①②③B、①③④
C、②④D、①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}(n∈N*)中,其前n项和为Sn,满足2Sn=n-n2
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
n•2an,n=2k-1
1
n2+2n
,n=2k
(k为正整数),求数列{bn}的前2n项和T2n

查看答案和解析>>

科目:高中数学 来源: 题型:

由函数y=f(x)确定数列{an},an=f(n).若函数y=f-1(x)能确定数列{bn},bn=f-1(n),则称数列{bn}是数列{an}的“反数列”.
(1)若函数f(x)=2
x
确定数列{an}的反数列为{bn},求bn.;
(2)对(1)中的{bn},不等式
1
bn+1
+
1
bn+2
+…+
1
b2n
1
2
loga(1-2a)
对任意的正整数n恒成立,求实数a的取值范围;
(3)设cn=
1+(-1)λ
2
3n+
1-(-1)λ
2
•(2n-1)
(λ为正整数),若数列{cn}的反数列为{dn},{cn}与{dn}的公共项组成的数列为{tn}(公共项tk=cp=dq,k,p,q为正整数),求数列{tn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},C={x|x2+2x-8=0}
(1)若A∩B=A∪B,求a的值;
(2)若A∩B=A∩C≠∅,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设正实数x,y,z满足x+y+z=4,xy+yz+zx=5,则y的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x且f(x)=g(x)+h(x),其中g(x)为奇函数,h(x)为偶函数,若不等式2a•g(x)+h(2x)≥0对任意x∈[1,2]恒成立,则
(1)g(x)=
 

(2)实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:?x∈R,x2+2x+2>0.则命题p的否定?p:
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|
a
|=4,
e
为单位向量,当
a
e
的夹角为
3
时,
a
+
e
a
-
e
上的投影为(  )
A、5
B、
15
4
C、
15
13
13
D、
5
21
7

查看答案和解析>>

同步练习册答案