精英家教网 > 高中数学 > 题目详情
设正实数x,y,z满足x+y+z=4,xy+yz+zx=5,则y的最大值为
 
考点:基本不等式
专题:不等式的解法及应用
分析:把x,z看成是一元二次方程的两个实数根,根据根与系数的关系列出一元二次方程,然后由判别式得到y的取值范围,求出y的最大值.
解答: 解:∵x+y+z=4,
∴x+z=4-y,①
∵xy+yz+zx=5,
∴xz=5-(yz+xy)=5-y(x+z)=5-y(4-y),
即xz=5-4y+y2,②
由①②及韦达定理知:x,z是一元二次方程t2+(4-y)t+(5-4y+y2)=0的两实根,
则判别式△=(4-y)2-4(5-4y+y2)≥0,
化简得:3y2-8y+4≤0,
2
3
≤y≤2,
∴y的最大值是2.
点评:本题考查的是一元二次方程根与系数的关系,根据根与系数的关系列出一元二次方程,然后由判别式求出y的取值范围,确定y的最大值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,四棱锥S-ABCD的底面为正方形,SD⊥底面ABCD,则下列结论中不正确的是(  )
A、AC⊥SB
B、AB∥平面SCD
C、AB与SC所成的角等于DC与SA所成的角
D、SA与平面SBD所成的角等于SC与平面SBD所成的角

查看答案和解析>>

科目:高中数学 来源: 题型:

在四棱锥P-ABCD中,PA⊥平面ABCD,AD∥BC,BC=2AD=4,AB=CD=
10

(Ⅰ)证明:BD⊥平面PAC;
(Ⅱ)若二面角A-PC-D的大小为45°,求AP的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若集合P={x|x=3k-2,k∈Z},Q={x|x=6n+1,n∈Z},试判断P、Q的包含关系并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合Tn={X|X=(x1x2,…,xn),xiN*,i=1,2,…,n} (n≥2).对于A=(a1,a2,…,an),B=(b1,b2,…,bn)∈Tn,定义;
AB
=(b1-a1b2-a2,…,bn-an)
,λ(a1,a2,…,an)=(λa1,λa2,…,λan)(λ∈R);A与B之间的距离为d(A,B)=
n
i=1
|ai-bi|

(Ⅰ)当n=5时,设A=(1,2,1,2,a5),B=(2,4,2,1,3).若d(A,B)=7,求a5
(Ⅱ)证明:若A,B,C∈Tn,且?λ>0,使
AB
BC
,则d(A,B)+d(B,C)=d(A,C);
(Ⅲ)记I=(1,1,…,1)∈Tn.若A,B∈Tn,且d(I,A)=d(I,B)=p,求d(A,B)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若不等式|x-a|<1的解集为{x|1<x<3},则实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设x,y满足
2x+y-4≥0
x-y+1≥0
x-ay-2≤0
时,若目标函数z=x+y既有最大值也有最小值,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(a,1)和曲线C:x2+y2-x-y=0,若过点A的任意直线都与曲线C至少有一个交点,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数f(x)=
2x2-1
x2+3
的值域.

查看答案和解析>>

同步练习册答案