精英家教网 > 高中数学 > 题目详情
在△ABC中,已知a=
5
,b=
2
,∠A=45°则c=
 
考点:正弦定理
专题:解三角形
分析:根据余弦定理,建立方程关系即可得到结论.
解答: 解:∵a=
5
,b=
2
,∠A=45°,
∴由a2=b2+c2-2bccosA得,5=2+c2-2c,
即c2-2c-3=0,
解得c=3或c=-1(舍去),
故答案为:3.
点评:本题主要考查三角形边长的计算,根据余弦定理建立方程是解决本题的关键,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知焦点在轴上的椭圆
x2
a2
+
y2
b2
=1(a>b>0),其长轴长为4,且点(1,
3
2
)在该椭圆上.
(1)求椭圆的标准方程;
(2)直线y=x+1与椭圆两个交点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

若锐角A,B,C满足A+B+C=π,以角A,B,C分别为内角构造一个三角形,设角A,B,C所对的边分别是a,b,c,依据正弦定理和余弦定理,得到等式:sin2A=sin2B+sin2C-2sinBsinCcosA,现已知锐角A,B,C满足A+B+C=π,则(
π
2
-
A
2
)+(
π
2
-
B
2
)+(
π
2
-
C
2
)=π,类比上述方法,可以得到的等式是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b∈N*,f(a+b)=f(a)•f(b),f(1)=2,则
f(2)
f(1)
+
f(3)
f(2)
+…+
f(2012)
f(2011)
+
f(2013)
f(2012)
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C的极坐标方程为:ρ2=2ρcosθ-mρsinθ+4上的两点M、N关于直线
x=t-
1
2
y=1-2t
(t为参数)对称,则m=
 
;直线l:tx+y-t+1=0(t∈R)与曲线C相交于A、B两点,则|AB|的最小值是
 
.(注:极坐标系的极轴OX与直角坐标系的X轴的非负半轴重合且单位长度相同)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|
a
|=2,|
b
|=4,(
a
+
b
)⊥
a
,则|
a
-2
b
|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某校高一(1)班共有42名学生,军训的时候,教官将这42人排成一列,自1起往下报数,报偶数的人出列;留下的人再重新报数,还是报偶数的人出列,…,这样下去,如果最后留下两个人,那么这两个人在第一次报数时报的数分别是
 
 

查看答案和解析>>

科目:高中数学 来源: 题型:

防疫站有A、B、C、D四名内科医生和E、F两名儿科医生,现将他们分成两个3人小组分别派往甲、乙两地指导疾病防控.两地都需要既有内科医生又有儿科医生,而且A只能去乙地.则不同的选派方案共有
 
种.

查看答案和解析>>

科目:高中数学 来源: 题型:

连掷骰子两次(骰子六个面分别标有数字1,2,3,4,5,6)朝上的面的点数分别记为a和b,则直线:3x-4y=0与圆(x-a)2+(y-b)2=4相切的概率为(  )
A、
1
2
B、
1
3
C、
1
6
D、
1
18

查看答案和解析>>

同步练习册答案