精英家教网 > 高中数学 > 题目详情
19.已知在△ABC中,角A、B、C所对的边分别为a、b、c,且$\frac{b}{sinB}$=$\frac{\sqrt{3}a}{cosA}$.
(1)求角A的大小;
(2)若a=4,求$\sqrt{3}$b-c的最大值.

分析 (1)由正弦定理化简已知等式可得sinBcosA=$\sqrt{3}$sinAsinB,由sinB≠0,可得:tanA=$\frac{\sqrt{3}}{3}$,结合范围A∈(0,π),即可求A的值.
(2)由正弦定理可得:b=8sinB,c=8sinC,利用两角和的正弦函数公式化简可得$\sqrt{3}$b-c=8sin(B-$\frac{π}{6}$),由范围B∈(0,$\frac{5π}{6}$),可得B-$\frac{π}{6}$∈(-$\frac{π}{6}$,$\frac{2π}{3}$),利用正弦函数的图象和性质即可得解.

解答 解:(1)∵$\frac{b}{sinB}$=$\frac{\sqrt{3}a}{cosA}$.
∴由正弦定理可得:sinBcosA=$\sqrt{3}$sinAsinB,
∵B为三角形内角,sinB≠0,
∴可得:tanA=$\frac{\sqrt{3}}{3}$,
∵A∈(0,π),
∴A=$\frac{π}{6}$.
(2)∵a=4,由正弦定理可得$\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}=2R=\frac{4}{\frac{1}{2}}=8$,可得:b=8sinB,c=8sinC,
∴$\sqrt{3}$b-c=8($\sqrt{3}$sinB-sinC)=8($\sqrt{3}$sinB-sin($\frac{5π}{6}$-B))=8sin(B-$\frac{π}{6}$),
∵B∈(0,$\frac{5π}{6}$),B-$\frac{π}{6}$∈(-$\frac{π}{6}$,$\frac{2π}{3}$),
∴$\sqrt{3}$b-c=8sin(B-$\frac{π}{6}$)≤8,即最大值为8.

点评 本题主要考查了正弦定理,两角和的正弦函数公式,正弦函数的图象和性质的应用,考查了计算能力和转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知x,y,z∈R+,求证:$\frac{x}{2x+y+z}$+$\frac{y}{x+2y+z}$+$\frac{z}{x+y+2z}$≤$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知f(x)是定义在R上的奇函数,当x>0时,f(x)=($\frac{1}{3}$)x+1.
(1)求f(x)在R上的解析式;
(2)画出f(x)的图象;
(3)根据图象指出函数f(x)的值域和单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求证:
(1)cos(-210°)•tan(-240°)+sin(-30°)=1.
(2)$\frac{cos(-α-π)•sin(π+α)}{cos(-α)•tan(2π+α)}$=cosα.
(3)sin(-α)•sin(π-α)-2cos2(-α)+1=-cos2α.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=2sin(π-x)cosx.
(1)将f(x)化为Asin(ωx+Φ)的形式(A>0,ω>0);
(2)求f(x)的最小正周期;
(3)求f(x)在区间[-$\frac{π}{6}$,$\frac{π}{2}$]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.若方程x+b=$\sqrt{{x}^{2}-1}$没有实根,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在△ABC中,内角A,B,C所对的边的长分别为a,b,c,证明:
(1)$\frac{1}{{a}^{3}}$+$\frac{1}{{b}^{3}}$+$\frac{1}{{c}^{3}}$+abc≥2$\sqrt{3}$;
(2)$\frac{π}{A}$+$\frac{π}{B}$+$\frac{π}{C}$≥9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知sin(π-α)=$\frac{1}{3}$,则sin(α-2013π)的值为(  )
A.$\frac{2\sqrt{2}}{3}$B.-$\frac{2\sqrt{2}}{3}$C.$\frac{1}{3}$D.-$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在棱长为2的正方体内任取一点,则这点到正方体某一顶点的距离小于1的概率为$\frac{π}{48}$.

查看答案和解析>>

同步练习册答案