精英家教网 > 高中数学 > 题目详情
18.如图,在四棱锥A-EFCB中,△AEF为等边三角形,平面AEF⊥平面EFCB,EF=2,四边形EFCB是高为$\sqrt{3}$的等腰梯形,EF∥BC,O为EF的中点.
(1)求证:AO⊥CF;
(2)求O到平面ABC的距离.

分析 (1)证明AO⊥EF,推出AO⊥平面EFCB,即可证明AO⊥CF.
(2)取BC的中点G,连接OG.推出OG⊥BC,OA⊥BC,得到BC⊥平面AOG,过O作OH⊥AG,垂足为H,说明OH⊥平面ABC,O到平面ABC的距离为OH,求解即可.

解答 (1)证明:因为△AEF等边三角形,O为EF的中点,所以AO⊥EF…(1分)
又因为平面AEF⊥平面EFCB,AO?平面AEF,平面AEF∩平面EFCB=EF,
所以AO⊥平面EFCB,…(4分)
又CF?平面EFCB,所以AO⊥CF…(5分)
(2)解:取BC的中点G,连接OG.
由题设知,OG⊥BC…(6分)
由(1)知AO⊥平面EFCB,
又BC?平面EFCB,所以OA⊥BC,因为OG∩OA=O,所以BC⊥平面AOG…(8分)
过O作OH⊥AG,垂足为H,则BC⊥OH,因为AG∩BC=G,所以OH⊥平面ABC.
…(10分)
因为$OG=\sqrt{3},AO=\sqrt{3}$,所以$OH=\frac{{\sqrt{6}}}{2}$,
即O到平面ABC的距离为$\frac{{\sqrt{6}}}{2}$.(另外用等体积法亦可)…(12分)

点评 本题考查直线与平面垂直的判定定理的应用,空间点、线、面距离的求法,考查空间想象能力以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知函数y=f(x-2)-1是奇函数,则函数y=f(x)的图象关于(  )
A.直线x=-2对称B.直线x=2对称C.点(2,-1)对称D.点(-2,1)对称

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.有下列四个说法:
①命题“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”;
②“命题p∨q为真”是“命题p∧q为真”的必要不充分条件;
③命题“已知x,y∈R,若x<1或y<2,则x+y<3”的逆命题为真命题;
④在区间[0,π]上随机取一个数x,则事件“$tanx•cosx≥\frac{1}{2}$”发生的概率为$\frac{5}{6}$;
其中正确的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知离散型随机变量X的分布列如表:若E(X)=0,D(X)=1,则P(X<1)等于(  )
X-1012
Pabc$\frac{1}{12}$
A.$\frac{1}{2}$B.$\frac{2}{5}$C.$\frac{3}{4}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图,设点A是单位圆上的一个定点,动点P从点A出发,在圆上按逆时针方向旋转一周,点P所旋转过的弧$\widehat{AP}$的长为l,弦AP的长为d,则函数d=f(l)的图象大致是(  )π
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某学习小组由三名男生和三名女生组成,现从中选取参加学校座谈会的代表,规则是每次选取一人,依次选取,每人被选取的机会均等.
(I)若要求只选取两名代表,求选出的两名表都是男生或这都是女生的概率;
(Ⅱ)若选取只要女生入选,选取即结束;代表的数量X不限,求X的分布列和数学期望EX.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某人先后抛掷两枚股子,用ξ表示先后抛掷两枚骰子所得点数之差的绝对值.
(1)求ξ的分布列和数学期望;
(2)若记“函数f(x)=x+$\frac{ξ}{x}$在区间[$\sqrt{3}$,+∞)上单调递增”为事件A,求事件A的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列命题中正确的是(  )
A.若ξ服从正态分布N(0,2),且P(ξ>2)=0.4,则P(0<ξ<2)=0.2
B.x=1是x2-x=0的必要不充分条件
C.直线ax+y+2=0与ax-y+4=0垂直的充要条件为a=±1
D.“若xy=0,则x=0或y=0”的逆否命题为“若x≠0或y≠0,则xy≠0”

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某学校社团招聘工作人员,设置A、B两组测试项目供应聘人员选择,甲、乙、丙、丁四人参加应聘,其中甲、乙、丙三人各自独立参加A组测试,已知甲、乙两人各自通过测试的概率均为$\frac{1}{2}$,丙通过测试的概率为$\frac{3}{5}$.丁参加B组测试,已知B组共有6道试题,丁会做其中的4道题.丁只能且必须选择4道题作答,答对3道题则竞聘成功.
(Ⅰ)求丁应聘成功的概率;
(Ⅱ)记测试通过的总人数为ξ,求ξ的分布列和期望.

查看答案和解析>>

同步练习册答案