精英家教网 > 高中数学 > 题目详情
2.曲线y=x(3lnx+1)在点(1,1)处的切线与直线x=0和y=x围成的三角形的面积为$\frac{3}{2}$.

分析 根据求导公式求出函数的导数,把x=1代入求出切线的斜率,代入点斜式方程并化简,分别令x=0和y=x求出切线与它们的交点坐标,再代入面积公式求解.

解答 解:∵y=x(3lnx+1),
∴y′=3lnx+4,
∴曲线在点(1,1)处的切线斜率k=4,
∴切线方程为:y-1=4(x-1),
即y=4x-3,
令x=0得,y=-3;令y=x得,x=1,
∴在点(1,1)处的切线与直线x=0和y=x
围成的三角形的面积为$\frac{1}{2}$×3×1=$\frac{3}{2}$.
故答案为:$\frac{3}{2}$.

点评 本题考查导数的几何意义、切线的求法和三角形的面积公式,考查考生的计算能力,求出切线方程是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知点A(2,1)、B(4,5)、M(x,y)为动点,O为原点,若$\overrightarrow{OA}$与$\overrightarrow{OM}$在$\overrightarrow{OB}$方向上的投影相等,则点M的轨迹方程为4x+5y=13.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知抛物线x2=2py(p>0)的焦点为F,A(x1,y1)、B(x2,y2)是过F的直线与抛物线的两个交点,求证:
(1)x1x2=-p2,y1y2=$\frac{p2}{4}$;
(2)$\frac{1}{|AF|}$+$\frac{1}{|BF|}$为定值;
(3)以AB为直径的圆与抛物线的准线相切.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.求导:y=$\frac{sin2x}{2x-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.解不等式:$\frac{(x-1)(x-2)}{x+1}$>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知tanα=$\frac{1}{3}$,cosβ=$\frac{\sqrt{5}}{5}$,α、β∈(0,π),求:
(1)cos2α;
(2)α+β.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数k(x)=alnx,h(x)=2a2lnx+x2,(a≠0),设f(x)=k(x)+h′(x)-x.
(1)若函数y=f(x)的图象在x=1处的切线与直线2x+y-10=0平行,求a的值;
(2)当a∈(-∞,0)时,记函数f(x)的最小值为g(a).求证:g(a)≤$\frac{{e}^{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知m,n∈R+,求证:$\frac{m+n}{2}$≥$\root{m+n}{{m}^{n}{n}^{m}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知实数p>0,曲线C1:$\left\{\begin{array}{l}{x=2p{t}^{2}}\\{y=2pt}\end{array}\right.$(t为参数)上的点A(2,m),曲线C2:$\left\{\begin{array}{l}{x=\frac{p}{2}+6cosθ}\\{y=6sinθ}\end{array}\right.$(θ为参数)的圆心为点B,A、B两点间的距离等于圆C2的半径,则p=8.

查看答案和解析>>

同步练习册答案