精英家教网 > 高中数学 > 题目详情
12.已知实数p>0,曲线C1:$\left\{\begin{array}{l}{x=2p{t}^{2}}\\{y=2pt}\end{array}\right.$(t为参数)上的点A(2,m),曲线C2:$\left\{\begin{array}{l}{x=\frac{p}{2}+6cosθ}\\{y=6sinθ}\end{array}\right.$(θ为参数)的圆心为点B,A、B两点间的距离等于圆C2的半径,则p=8.

分析 由曲线C1:$\left\{\begin{array}{l}{x=2p{t}^{2}}\\{y=2pt}\end{array}\right.$(t为参数),可得y2=2px,把点A(2,m)代入可得:m2=4p,曲线C2:$\left\{\begin{array}{l}{x=\frac{p}{2}+6cosθ}\\{y=6sinθ}\end{array}\right.$(θ为参数),化为$(x-\frac{p}{2})^{2}+{y}^{2}$=36,可得圆心点B,半径r.利用两点之间的距离公式可得|AB|,利用A、B两点间的距离等于圆C2的半径,即可解出.

解答 解:由曲线C1:$\left\{\begin{array}{l}{x=2p{t}^{2}}\\{y=2pt}\end{array}\right.$(t为参数),可得y2=2px,把点A(2,m)代入可得:m2=4p,
曲线C2:$\left\{\begin{array}{l}{x=\frac{p}{2}+6cosθ}\\{y=6sinθ}\end{array}\right.$(θ为参数),化为$(x-\frac{p}{2})^{2}+{y}^{2}$=36,圆心点B$(\frac{p}{2},0)$,半径r=6.
|AB|=$\sqrt{(2-\frac{p}{2})^{2}+{m}^{2}}$=$\sqrt{(2-\frac{p}{2})^{2}+4p}$=$\sqrt{4+2p+\frac{{p}^{2}}{4}}$,
∵A、B两点间的距离等于圆C2的半径,
∴$\sqrt{4+2p+\frac{{p}^{2}}{4}}$=6,
解得p=8.
故答案为:8.

点评 本题考查了参数方程化为普通方程、两点之间的距离公式、圆的标准方程及其性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.曲线y=x(3lnx+1)在点(1,1)处的切线与直线x=0和y=x围成的三角形的面积为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知两条斜率为1的直线L1,L2分别过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的两个焦点,且L1与双曲线交于A,B两点,L2与双曲线交于C,D两点,若四边形ABCD满足AC⊥AB,则该双曲线的离心率为$\frac{\sqrt{10}+\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右顶点为A,O为坐标原点,以A为圆心的圆与双曲线C的某渐近线交于两点P、Q,若∠PAQ=60°且$\overrightarrow{OQ}$=3$\overrightarrow{OP}$,则双曲线C的离心率为(  )
A.$\frac{2\sqrt{3}}{3}$B.$\frac{\sqrt{7}}{2}$C.$\frac{\sqrt{39}}{6}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知在△ABC中,S△ABC=3$\sqrt{3}$,c=4,∠A=120°,求a和b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知△ABC的外接圆的圆心为O,半径为1,若$\overrightarrow{AB}$+$\overrightarrow{AC}$=2$\overrightarrow{AO}$,且|$\overrightarrow{OA}$|=|$\overrightarrow{AC}$|,则向量$\overrightarrow{BA}$在向量$\overrightarrow{BC}$方向上的投影为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.解关于x的不等式$\sqrt{{x}^{2}-4mx+4{m}^{2}}$>m+3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,0<φ<$\frac{π}{2}$)的部分图象如图所示,P是图象的最高点,Q为图象与x轴的交点,O为坐标原点,若OQ=4,OP=$\sqrt{5}$,PQ=$\sqrt{13}$.
(1)求函数y=f(x)的解析式;
(2)将函数y=f(x)的图象向右平移2个单位后得到函数y=g(x)的图象,当x∈[0,3]时,求函数h(x)=f(x)•g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图,在地面上共线的三点A,B,C处测得一建筑物的仰角分别为30°,45°,60°,且AB=BC=60m,则建筑物的高度为(  )
A.15$\sqrt{6}$mB.20$\sqrt{6}$mC.25$\sqrt{6}$mD.30$\sqrt{6}$m

查看答案和解析>>

同步练习册答案