精英家教网 > 高中数学 > 题目详情
3.已知两条斜率为1的直线L1,L2分别过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的两个焦点,且L1与双曲线交于A,B两点,L2与双曲线交于C,D两点,若四边形ABCD满足AC⊥AB,则该双曲线的离心率为$\frac{\sqrt{10}+\sqrt{2}}{2}$.

分析 由题意,A,C关于原点对称,利用AC⊥AB,斜率为1,可得A($-\frac{c}{2},\frac{c}{2}$),代入双曲线方程,可得e的方程,即可求出e的值.

解答 解:由题意,A,C关于原点对称,
∵AC⊥AB,直线斜率为1
∴A($-\frac{c}{2},\frac{c}{2}$)
代入双曲线方程可得$\frac{\frac{{c}^{2}}{4}}{{a}^{2}}-\frac{\frac{{c}^{2}}{4}}{{b}^{2}}=1$,
化简可得e4-6e2+4=0,
∵e>1,
∴e2=$\frac{(\sqrt{5}+1)^{2}}{2}$,
∴e=$\frac{\sqrt{10}+\sqrt{2}}{2}$,
故答案为:$\frac{\sqrt{10}+\sqrt{2}}{2}$.

点评 本题考查双曲线的离心率,考查学生的计算能力,确定A的坐标是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知抛物线x2=2py(p>0)的焦点为F,A(x1,y1)、B(x2,y2)是过F的直线与抛物线的两个交点,求证:
(1)x1x2=-p2,y1y2=$\frac{p2}{4}$;
(2)$\frac{1}{|AF|}$+$\frac{1}{|BF|}$为定值;
(3)以AB为直径的圆与抛物线的准线相切.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数k(x)=alnx,h(x)=2a2lnx+x2,(a≠0),设f(x)=k(x)+h′(x)-x.
(1)若函数y=f(x)的图象在x=1处的切线与直线2x+y-10=0平行,求a的值;
(2)当a∈(-∞,0)时,记函数f(x)的最小值为g(a).求证:g(a)≤$\frac{{e}^{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知m,n∈R+,求证:$\frac{m+n}{2}$≥$\root{m+n}{{m}^{n}{n}^{m}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=x2-ax,g(x)=lnx,h(x)=f(x)+g(x),(a∈R).
(1)若不等式f(x)≥g(x)恒成立,求实数a的取值范围;
(2)若实数h(x)有两个极值点x1,x2
①求实数a的取值范围;②当x1∈(0,$\frac{1}{2}$)时,求证:h(x1)-h(x2)>$\frac{3}{4}$-ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知f(x)是函数y=0.32x+3的反函数,且f(a),f(2a)都有意义.
(1)求f(x);
(2)试比较2f(2a)与4f(a)的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知斜率为1的直线与双曲线2x2-y2=1相交于A,B两点,又AB中点的横坐标为1.
(1)求直线的方程;
(2)求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知实数p>0,曲线C1:$\left\{\begin{array}{l}{x=2p{t}^{2}}\\{y=2pt}\end{array}\right.$(t为参数)上的点A(2,m),曲线C2:$\left\{\begin{array}{l}{x=\frac{p}{2}+6cosθ}\\{y=6sinθ}\end{array}\right.$(θ为参数)的圆心为点B,A、B两点间的距离等于圆C2的半径,则p=8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.把下列参数方程转化为普通方程,并说明它们各表示什么曲线:
(1)$\left\{\begin{array}{l}{x=3-2t}\\{y=-1-4t}\end{array}\right.$(t为参数)
(2)$\left\{\begin{array}{l}{x=cosθ}\\{y=cos2θ+1}\end{array}\right.$(θ为参数)
(3)$\left\{\begin{array}{l}{x=t+\frac{1}{t}}\\{y=t-\frac{1}{t}}\end{array}\right.$(t为参数)
(4)$\left\{\begin{array}{l}{x=5cosφ}\\{y=3sinφ}\end{array}\right.$(φ为参数)

查看答案和解析>>

同步练习册答案