精英家教网 > 高中数学 > 题目详情
15.已知斜率为1的直线与双曲线2x2-y2=1相交于A,B两点,又AB中点的横坐标为1.
(1)求直线的方程;
(2)求线段AB的长.

分析 (1)设出直线方程,代双曲线方程,利用韦达定理及AB中点的横坐标为1,求出m,即可求直线的方程;
(2)利用弦长公式,即可求得线段AB的长.

解答 解:(1)设斜率为1的直线l的方程为y=x+m,代入2x2-y2=1,消去y可得x2-2mx-(m2+1)=0
∴△=8m2+4>0
设A(x1,y1),B(x2,y2),则x1+x2=2m,x1x2=-(m2+1)
∵AB中点的横坐标为1,
∴x1+x2=2m=2,
∴m=1,
∴直线的方程为y=x+1;
(2)x1+x2=2,x1x2=-2
|AB|=$\sqrt{2}$•$\sqrt{4-4×(-2)}$=2$\sqrt{6}$.

点评 本题考查直线与双曲线的位置关系,考查韦达定理及弦长公式的运用,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.设f(x)是定义在(0,+∞)上的函数,k是正常数,且对?x∈(0,+∞)恒有f[f(x)]=kx成立
(1)若f(x)是在(0,+∞)上的增函数,且k=1,求证f(x)=x;
(2)对?x1,x2∈(0,+∞),当x2>x1时,有f(x2)-f(x1)>x2-x1成立,若k=2,证明:$\frac{4}{3}$<$\frac{f(x)}{x}$<$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}满足an+1=$\left\{\begin{array}{l}{2{a}_{n},n为偶数}\\{{a}_{n}+1,n为奇数}\end{array}\right.$,a1=1,若bn=a2n-1+2(bn≠0)
(1)求a4,并证明数列{bn}是等比数列;
(2)令cn=n•a2n-1,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知两条斜率为1的直线L1,L2分别过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的两个焦点,且L1与双曲线交于A,B两点,L2与双曲线交于C,D两点,若四边形ABCD满足AC⊥AB,则该双曲线的离心率为$\frac{\sqrt{10}+\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.当且仅当x∈(a,b)∪(c,+∞)(其中b≤c)时,函数f(x)=2|x+1|的图象在g(x)=|2x-t|+x图象的下方,则c+b-a的取值范围为(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右顶点为A,O为坐标原点,以A为圆心的圆与双曲线C的某渐近线交于两点P、Q,若∠PAQ=60°且$\overrightarrow{OQ}$=3$\overrightarrow{OP}$,则双曲线C的离心率为(  )
A.$\frac{2\sqrt{3}}{3}$B.$\frac{\sqrt{7}}{2}$C.$\frac{\sqrt{39}}{6}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知在△ABC中,S△ABC=3$\sqrt{3}$,c=4,∠A=120°,求a和b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.解关于x的不等式$\sqrt{{x}^{2}-4mx+4{m}^{2}}$>m+3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)满足f(x)-f(-x)+4x=0且当x>0时,f′(x)-x+2<0,则不等式f(x)-f(1-x)+3x-$\frac{3}{2}$>0解集为(  )
A.(-∞,$\frac{1}{2}$)B.($\frac{1}{2}$,+∞)C.(-1,1)D.(-∞,$\frac{1}{3}$)

查看答案和解析>>

同步练习册答案