精英家教网 > 高中数学 > 题目详情
15.若函数y=f(x)在x=2处的导数为-2,则$\underset{lim}{x→2}$$\frac{f(x)-f(2)}{x-2}$(  )
A.-1B.-2C.2D.1

分析 直接利用导数的定义f′(x ),即可求得.

解答 解:∵函数y=f(x)在x=2处的导数为-2,
∴$\underset{lim}{x→2}$$\frac{f(x)-f(2)}{x-2}$=f′(2)=-2,
故选:B.

点评 本题主要考查了导数的定义,以及极限及其运算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.下列四种说法:
①垂直于同一平面的所有向量一定共面;
②在△ABC中,已知$\frac{cosA}{a}=\frac{cosB}{b}=\frac{cosC}{c}$,则∠A=60°;
③在△ABC中,sin2A=sin2B+sin2C+sinBsinC,则A=$\frac{π}{3}$
④若a>0,b>0,a+b=2,则a2+b2≥2;
正确的序号有①②④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数y=ax+2-2(a>0且a≠1)的图象恒过定点A,若点A在直线mx+ny+1=0上,其中mn>0,则当$\frac{1}{m}$+$\frac{1}{n}$取最小值时,椭圆$\frac{{x}^{2}}{{m}^{2}}$+$\frac{{y}^{2}}{{n}^{2}}$=1的离心率为$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知sinα,cosα是方程x2+ax+2b2=0的两个根,且0≤α<2π,a,b为整数,求角α

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.求下列函数的导数:
(1)y=x-sin$\frac{x}{2}$cos$\frac{x}{2}$;
(2)y=sin4$\frac{x}{4}$+cos4$\frac{x}{4}$;
(3)y=$\frac{1+\sqrt{x}}{1-\sqrt{x}}$+$\frac{1-\sqrt{x}}{1+\sqrt{x}}$;
(4)y=-sin$\frac{x}{2}$(1-2cos2$\frac{x}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知M(a,b)是圆O:x2+y2=r2内不在坐标轴上的一点,直线l的方程为ax+by=r2,直线m被圆O所截得的弦的中点为M,则下列说法中正确的是(  )
A.m∥l且l与圆O相交B.m⊥l且l与圆O相切C.m∥l且l与圆O相离D.m⊥l且l与圆O相离

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.化简:$\frac{1+sin2θ-cos2θ}{1+sin2θ+cos2θ}$+$\frac{1+sin2θ+cos2θ}{1+sin2θ-cos2θ}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.函数f(x)=a•lnx在点(1,0)处的切线方程是y=2x+b,求a,b.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,三棱柱中ABC-A1B1C1,侧棱与底面ABC垂直,且AB1⊥BC1,AB=AA1=1,BC=2.
(I)证明:AB1⊥A1C1
(Ⅱ)求点A1到平面ABC1的距离.

查看答案和解析>>

同步练习册答案