分析 (1)如图所示,取AC的中点O,连接BO,OD.△ABC是等边三角形,可得OB⊥AC.由已知可得:△ABD≌△CBD,AD=CD.△ACD是直角三角形,可得AC是斜边,∠ADC=90°.可得DO=$\frac{1}{2}$AC.利用DO2+BO2=AB2=BD2.可得OB⊥OD.利用线面面面垂直的判定与性质定理即可证明.
(2)设点D,B到平面ACE的距离分别为hD,hE.则$\frac{{h}_{D}}{{h}_{E}}$=$\frac{DE}{BE}$.根据平面AEC把四面体ABCD分成体积相等的两部分,可得$\frac{\frac{1}{3}{S}_{△ACE}•{h}_{D}}{\frac{1}{3}{S}_{△ACE}•{h}_{E}}$=$\frac{{h}_{D}}{{h}_{E}}$=$\frac{DE}{BE}$=1,即点E是BD的中点.建立如图所示的空间直角坐标系.不妨取AB=2.利用法向量的夹角公式即可得出.
解答 (1)证明:如图所示,取AC的中点O,连接BO,OD.![]()
∵△ABC是等边三角形,∴OB⊥AC.
△ABD与△CBD中,AB=BD=BC,∠ABD=∠CBD,
∴△ABD≌△CBD,∴AD=CD.
∵△ACD是直角三角形,
∴AC是斜边,∴∠ADC=90°.
∴DO=$\frac{1}{2}$AC.
∴DO2+BO2=AB2=BD2.
∴∠BOD=90°.
∴OB⊥OD.
又DO∩AC=O,∴OB⊥平面ACD.
又OB?平面ABC,
∴平面ACD⊥平面ABC.
(2)解:设点D,B到平面ACE的距离分别为hD,hE.则$\frac{{h}_{D}}{{h}_{E}}$=$\frac{DE}{BE}$.
∵平面AEC把四面体ABCD分成体积相等的两部分,
∴$\frac{\frac{1}{3}{S}_{△ACE}•{h}_{D}}{\frac{1}{3}{S}_{△ACE}•{h}_{E}}$=$\frac{{h}_{D}}{{h}_{E}}$=$\frac{DE}{BE}$=1.
∴点E是BD的中点.
建立如图所示的空间直角坐标系.不妨取AB=2.
则O(0,0,0),A(1,0,0),C(-1,0,0),D(0,0,1),B(0,$\sqrt{3}$,0),E$(0,\frac{\sqrt{3}}{2},\frac{1}{2})$.
$\overrightarrow{AD}$=(-1,0,1),$\overrightarrow{AE}$=$(-1,\frac{\sqrt{3}}{2},\frac{1}{2})$,$\overrightarrow{AC}$=(-2,0,0).
设平面ADE的法向量为$\overrightarrow{m}$=(x,y,z),则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{AD}=0}\\{\overrightarrow{m}•\overrightarrow{AE}=0}\end{array}\right.$,即$\left\{\begin{array}{l}{-x+z=0}\\{-x+\frac{\sqrt{3}}{2}y+\frac{1}{2}z=0}\end{array}\right.$,取$\overrightarrow{m}$=$(3,\sqrt{3},3)$.
同理可得:平面ACE的法向量为$\overrightarrow{n}$=(0,1,$-\sqrt{3}$).
∴cos$<\overrightarrow{m},\overrightarrow{n}>$=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$=$\frac{-2\sqrt{3}}{\sqrt{21}×2}$=-$\frac{\sqrt{7}}{7}$.
∴二面角D-AE-C的余弦值为$\frac{\sqrt{7}}{7}$.
点评 本题考查了空间位置关系、空间角、三棱锥的体积计算公式、向量夹角公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | E(ξ1)<E(ξ2),D(ξ1)<D(ξ2) | B. | E(ξ1)<E(ξ2),D(ξ1)>D(ξ2) | C. | E(ξ1)>E(ξ2),D(ξ1)<D(ξ2) | D. | E(ξ1)>E(ξ2),D(ξ1)>D(ξ2) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | $\frac{π}{8}$ | C. | $\frac{1}{2}$ | D. | $\frac{π}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com