分析 利用同角三角函数的基本关系求得tanα的值,再利用两角差的正切公式求得tanβ=tan[(α+β)-α]的值.
解答 解:∵sinα=$\frac{\sqrt{3}}{2}$,α是第二象限角,∴cosα=-$\sqrt{{1-sin}^{2}α}$=-$\frac{1}{2}$,
∴tanα=$\frac{sinα}{cosα}$=-$\sqrt{3}$,又tan(α+β)=1,
则tanβ=tan[(α+β)-α]=$\frac{tan(α+β)-tanα}{1+tan(α+β)tanα}$=$\frac{1+\sqrt{3}}{1-\sqrt{3}}$=-2-$\sqrt{3}$,
故答案为:-2-$\sqrt{3}$.
点评 本题主要考查同角三角函数的基本关系,两角差的正切公式的应用,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | (-∞,3] | B. | [-2$\sqrt{2}$,3] | C. | [-2$\sqrt{2}$,2$\sqrt{2}$] | D. | [-3,3] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {-2,1,2} | B. | {-2,2} | C. | {1,2} | D. | {2} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -10 | B. | -11 | C. | -12 | D. | -16 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com