精英家教网 > 高中数学 > 题目详情

【题目】已知ABC是椭圆W上的三个点,O是坐标原点.

(I)当点BW的右顶点,且四边形OABC为菱形时,求此菱形的面积.

(II)当点B不是W的顶点时,判断四边形OABC是否可能为菱形,并说明理由.

【答案】(I)(II) 不可能是菱形

【解析】

解:(1)椭圆Wy21的右顶点B的坐标为(2,0)

因为四边形OABC为菱形,所以ACOB相互垂直平分.

所以可设A(1m)

代入椭圆方程得m21,即m±.

所以菱形OABC的面积是

|OB|·|AC|×2×2|m|.

(2)四边形OABC不可能为菱形.理由如下:

假设四边形OABC为菱形.

因为点B不是W的顶点,且直线AC不过原点,

所以可设AC的方程为ykxm(k≠0m≠0)

y并整理得(14k2)x28kmx4m240.

A(x1y1)C(x2y2),则=-m.

所以AC的中点为M.

因为MACOB的交点,

所以直线OB的斜率为-.

因为1,所以ACOB不垂直.

所以四边形OABC不是菱形,与假设矛盾.

所以当点B不是W的顶点时,四边形OABC不可能是菱形.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知曲线的参数方程为为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.曲线的极坐标方程为,曲线与曲线的交线为直线

1)求直线和曲线的直角坐标方程;

2)直线轴交于点,与曲线相交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平行四边形中,,现沿对角线折起,使点A到达点P,点MN分别在直线上,且ABMN四点共面.

1)求证:

2)若平面平面,二面角平面角大小为,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足为等比数列,且

1)求

2)设,记数列的前项和为

①求

②求正整数 k,使得对任意均有.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求下列各式极限:

1

2

3

4

5

6

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知双曲线

1)过的左顶点引的一条渐近线的平行线,求该直线与另一条渐近线及x轴围成的三角形的面积;

2)设斜率为1的直线lPQ两点,若l与圆相切,求证:

3)设椭圆,若MN分别是上的动点,且,求证:O到直线MN的距离是定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的奇数项是首项为1的等差数列,偶数项是首项为2的等比数列.数列项和为,且满足

(1)求数列的通项公式;

(2)求数列项和

(3)在数列中,是否存在连续的三项,按原来的顺序成等差数列?若存在,求出所有满足条件的正整数的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地有三家工厂,分别位于矩形ABCD的顶点AB,及CD的中点P处,已知km,,为了处理三家工厂的污水,现要在矩形ABCD的区域上(含边界),且AB与等距离的一点O处建造一个污水处理厂,并铺设排污管道AOBOOP,设排污管道的总长为ykm

I)按下列要求写出函数关系式:

,将表示成的函数关系式;

,将表示成的函数关系式.

)请你选用(I)中的一个函数关系式,确定污水处理厂的位置,使三条排水管道总长度最短.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

1)求曲线的普通方程和的直角坐标方程;

2)已知曲线的极坐标方程为,点是曲线的交点,点是曲线的交点,均异于原点,且,求实数的值.

查看答案和解析>>

同步练习册答案