精英家教网 > 高中数学 > 题目详情
若C
 
3
n
=C
 
3
n-1
+C
 
4
n-1
,则n=
 
考点:组合及组合数公式
专题:概率与统计
分析:利用组合数公式求解.
解答: 解:∵C
 
3
n
=C
 
3
n-1
+C
 
4
n-1

n(n-1)(n-2)
3×2×1
=
(n-1)(n-2)(n-3)
3×2×1
+
(n-1)(n-2)(n-3)(n-4)
4×3×2×1

整理,得n2-7n=0,
解得n=7或n=0(舍).
故答案为:7.
点评:本题考查组合数公式的应用,解题时要认真审题,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设n是自然数,f(n)=1+
1
2
+
1
3
+…+
1
n
,经计算可得,f(2)=
3
2
,f(4)>2,f(8)>
5
2
,f(16)>3,f(32)>
7
2
.观察上述结果,可得出的一般结论是(  )
A、f(2n)>
2n+1
2
B、f(n2)≥
n+2
2
C、f(2n)≥
n+2
2
D、f(2n)>
n+2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图1所示,在矩形ABCD中,AB=2AD=4,E为CD的中点,沿AE将△AED折起,如图2所示,O、H、M分别为AE、BD、AB的中点,且DM=2.
(1)求证OH∥平面DEC;
(2)求证平面ADE⊥平面ABCE;
(3)求三棱锥H-OMB的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
sinxcosx-
1
2
sin2x-
3
2
cos2x(x∈R)
(1)当x∈[-
π
12
12
]时,求函数f(x)取得最大值时的值;
(2)设锐角△ABC的内角A,B,C的对应边分别是a,b,c,且a=1,c∈N*,若向量
m
=(sinB,2),
n
=(-1,sinA),
n
m
,求c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log2
x+2a+1
x-3a+1

(1)求函数f(x)的定义域;
(2)若函数f(x)的定义域关于坐标原点对称,试讨论它的奇偶性和单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=4,AB=2.BM⊥PD于M.
(1)求证:平面ABM⊥平面PCD;
(2)求直线PC与平面ABM所成的角的正切值;
(3)求点O到平面ABM的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

点P是椭圆
x2
2
+y2=1上的一点,F1和F2是焦点,且∠F1PF2=30°,求△F1PF2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

以直角坐标系原点O为极点,x轴的正半轴为极轴建立极坐标系.已知曲线C1的极坐标方程为ρ2+6ρcosθ-2ρsinθ+6=0,曲线C2的参数方程为
x=3cosθ
y=3sinθ
(θ为参数).
(Ⅰ)将曲线C1的极坐标方程化为直角坐标方程;
(Ⅱ)若曲线C1与曲线C2交于A,B两点,求|AB|的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
ax3
3
-(a+1)x2+4x+1(a∈R)
(1)当a=-1时,求函数的单调区间;
(2)当a∈R时,讨论函数的单调增区间;
(3)是否存在负实数a,使x∈[-1,0],函数有最小值-3?

查看答案和解析>>

同步练习册答案