精英家教网 > 高中数学 > 题目详情
5.对于函数y=f(x),部分x与y的对应关系如下表:
x123456
y 375961
数列{xn}满足:x1=1,且对于任意n∈N*,点(xn,xn+1)都在函数y=f(x)的图象上,则x1+x2+…+x20的值为75.

分析 利用已知函数的关系求出数列的前几项,得到数列是周期数列,然后求出通过周期数列的和,即可求解本题.

解答 解:∵数列{xn}满足x1=1,且对任意n∈N*,点(xn,xn+1)都在函数y=f(x)的图象上,xn+1=f(xn
∴x1=1,x2=f(x1)=f(1)=3,x3=f(x2)=f(3)=5,x4=f(x3)=f(5)=6,x5=f(x4)=f(6)=1,…
∴数列是周期数列,周期为4,一个周期内的和为15,
∴x1+x2+x3+x4+…+x19+x20═5×(x1+x2+x3+x4)=5×15=75.
故答案为:75.

点评 本题考查函数与数列的关系,周期数列求和问题,判断数列是周期数列是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.二项式${(x-\frac{2}{x})^4}$的展开式中,含x2项的系数为8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知正项数列{an}满足a1=1,$\sqrt{{a}_{n+1}}$=$\sqrt{{a}_{n}}$$+\frac{{a}_{n}}{(n+1)^{2}}$,n∈N*
(Ⅰ)试比较an与an+1的大小,并说明理由;
(Ⅱ)求证:$\frac{1}{n+1}$$-\frac{1}{n+2}$$<\frac{1}{\sqrt{{a}_{n}}}$$-\frac{1}{\sqrt{{a}_{n+1}}}$$<\frac{1}{(n+1)^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}的首项a1=1,前n项和为Sn,且Sn+1-3Sn-2n-4=0(n∈N*
(1)求数列{an}的通项公式;
(2)设函数f(x)=anx+an-1x2+an-2x3+…+a1xn,f′(x)是函数f(x)的导函数,令bn=f′(1),求数列{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设向量$\overrightarrow{a}$=(cos2x,sinx),$\overrightarrow{b}$=(1,2cosx),将函数f(x)=$\overrightarrow{a}$,$\overrightarrow{b}$的图象向左平移φ(0<φ<π)个单位,得到函数g(x)的图象,若g(x)为奇函数,则φ的最小值为(  )
A.$\frac{π}{4}$B.$\frac{3π}{8}$C.$\frac{π}{2}$D.π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知直线l:$\left\{\begin{array}{l}{x=2+t}\\{y=-1-t}\end{array}\right.$(t为参数).曲线C的极坐标方程:p=3
(Ⅰ)设A、B是直线l与曲线C的交点,求|AB|
(Ⅱ)若P是曲线C上任意一点,求△ABP面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.某空间几何体的三视图为半径为$\sqrt{3}$的圆,则该几何体的内接正方体的棱长为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在△ABC中,角A,B,C所对应的边分别为a,b,c,$\frac{c-a}{b-a}$=$\frac{sinB}{sinA+sinC}$.
(1)求角C的大小;
(2)若c=2$\sqrt{3}$且sinA=2sinB,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若不等式ax2+bx+c>0的解集为{x|-1<x<2},则不等式$\frac{2a+b}{x}$>bx的解集为(-∞,0).

查看答案和解析>>

同步练习册答案