精英家教网 > 高中数学 > 题目详情
6.明朝数学家程大位将“孙子定理”(也称“中国剩余定理”)编成易于上口的《孙子歌诀》:三人同行七十稀,五树梅花廿一支,七子团圆正半月,除百零五便得知.已知正整数n被3除余2,被5除余3,被7除余4,求n的最小值.按此歌诀得算法如图,则输出n的结果为(  )
A.53B.54C.158D.263

分析 【方法一】根据正整数n被3除余2,被5除余3,被7除余4,求出n的最小值.
【方法二】按此歌诀得算法的程序框图,按程序框图知n的初值,代入循环结构求得n的值.

解答 解:【方法一】正整数n被3除余2,得n=3k+2,k∈N;
被5除余3,得n=5l+3,l∈N;
被7除余4,得n=7m+4,m∈N;
求得n的最小值是53.
【方法二】按此歌诀得算法如图,
则输出n的结果为
按程序框图知n的初值为263,代入循环结构得n=263-105-105=53,
即输出n值为53.
故选:A.

点评 本题考查了程序框图的应用问题,也考查了古代数学的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.甲、乙、丙、丁、戊5人排成一排照相,要求甲不站在两侧,且乙、丙两人站在一起,那么不同的排法种数为(  )
A.12B.24C.36D.72

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知等差数列{an}的前n项和为Sn,设A(a1009,1),B(2,-1),C(2,2)为坐标平面上三点,O为坐标原点,若向量$\overrightarrow{OA}$与$\overrightarrow{OB}$在向量$\overrightarrow{OC}$方向上的投影相同,则S2017为(  )
A.-2016B.-2017C.2017D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图,在正方体ABCD-A1B1C1D1中,M、E是AB的三等分点,G、N是CD的三等分点,F、H分别是BC、MN的中点,则四棱锥A1-EFGH的左视图是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图所示点F是抛物线y2=8x的焦点,点A、B分别在抛物线y2=8x及圆x2+y2-4x-12=0的实线部分上运动,且AB总是平行于x轴,则△FAB的周长的取值范围是(  )
A.(6,10)B.(8,12)C.[6,8]D.[8,12]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左,右焦点分别为F1,F2,点A在双曲线上,且AF2⊥x轴,若△AF1F2的内切圆半价为$({\sqrt{3}-1})a$,则其离心率为(  )
A.$\sqrt{3}$B.2C.$\sqrt{3}+1$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在平面直角坐标系中,定义d(P,Q)=|x1-x2|+|y1-y2|为两点P(x1,y1),Q(x2,y2)之间的“折线距离”.则下列命题中:
①若C点在线段AB上,则有d(A,C)+d(C,B)=d(A,B).
②若点A,B,C是三角形的三个顶点,则有d(A,C)+d(C,B)>d(A,B).
③到M(-1,0),N(1,0)两点的“折线距离”相等的点的轨迹是直线x=0.
④若A为坐标原点,B在直线x+y-2$\sqrt{5}$=0上,则d(A,B)的最小值为2$\sqrt{5}$.
真命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知A={x|-2<x<1},B={x|2x>1},则A∩(∁RB)为(  )
A.(-2,1)B.(-∞,1)C.(0,1)D.(-2,0]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知平行四边形ABCD中,AB=6,AD=10,BD=8,E是线段AD的中点.沿BD将△BCD翻折到△BC'D,使得平面BC'D⊥平面ABD.
(1)求证:C′D⊥平面ABD;
(2)求二面角D-BE-C′的余弦值.

查看答案和解析>>

同步练习册答案