精英家教网 > 高中数学 > 题目详情
11.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左,右焦点分别为F1,F2,点A在双曲线上,且AF2⊥x轴,若△AF1F2的内切圆半价为$({\sqrt{3}-1})a$,则其离心率为(  )
A.$\sqrt{3}$B.2C.$\sqrt{3}+1$D.$2\sqrt{3}$

分析 由题意可得A在双曲线的右支上,由双曲线的定义可得|AF1|-|AF2|=2a,设Rt△AF1F2内切圆半径为r,运用等积法和勾股定理,可得r=c-a,结合条件和离心率公式,计算即可得到所求值.

解答 解:由点A在双曲线上,且AF2⊥x轴,
可得A在双曲线的右支上,
由双曲线的定义可得|AF1|-|AF2|=2a,
设Rt△AF1F2内切圆半径为r,
运用面积相等可得S${\;}_{△A{F}_{1}{F}_{2}}$=$\frac{1}{2}$|AF2|•|F1F2|
=$\frac{1}{2}$r(|AF1|+|AF2|+|F1F2|),
由勾股定理可得|AF2|2+|F1F2|2=|AF1|2
解得r=$\frac{{|{A{F_2}}|+|{{F_1}{F_2}}|-|{A{F_1}}|}}{2}=\frac{2c-2a}{2}=c-a=({\sqrt{3}-1})a$,
$⇒c=\sqrt{3}a$,
则离心率e=$\frac{c}{a}$=$\sqrt{3}$,
故选A.

点评 本题考查双曲线的离心率的求法,注意运用双曲线的定义和三角形的等积法,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.若α的终边过点P(-2cos30°,2sin30°),则sinα的值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知集合A={x|2x2-7x<0},B={0,1,2,3,4},则(∁RA)∩B=(  )
A.{0}B.{1,2,3}C.{0,4}D.{4}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.曲线C为:到两定点M(-2,0)、N(2,0)距离乘积为常数16的动点P的轨迹.以下结论正确的个数为(  )
(1)曲线C一定经过原点;
(2)曲线C关于x轴对称,但不关于y轴对称;
(3)△MPN的面积不大于8;
(4)曲线C在一个面积为60的矩形范围内.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.明朝数学家程大位将“孙子定理”(也称“中国剩余定理”)编成易于上口的《孙子歌诀》:三人同行七十稀,五树梅花廿一支,七子团圆正半月,除百零五便得知.已知正整数n被3除余2,被5除余3,被7除余4,求n的最小值.按此歌诀得算法如图,则输出n的结果为(  )
A.53B.54C.158D.263

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.当双曲线$\frac{x^2}{{{m^2}+8}}-\frac{y^2}{6-2m}=1$的焦距取得最小值时,其渐近线的方程为(  )
A.y=±xB.$y=±\frac{2}{3}x$C.$y=±\frac{1}{3}x$D.$y=±\frac{1}{2}x$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合P={x∈R,||x|<2},Q={x∈R|-1≤x≤3},则P∩Q=(  )
A.[-1,2)B.(-2,2)C.(-2,3]D.[-1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知a,b为实常数,{ci}(i∈N*)是公比不为1的等比数列,直线ax+by+ci=0与抛物线y2=2px(p>0)均相交,所成弦的中点为Mi(xi,yi),则下列说法错误的是(  )
A.数列{xi}可能是等比数列B.数列{yi}是常数列
C.数列{xi}可能是等差数列D.数列{xi+yi }可能是等比数列

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数y=cos2x,x∈R的最小正周期为(  )
A.$\frac{π}{2}$B.πC.D.1

查看答案和解析>>

同步练习册答案