精英家教网 > 高中数学 > 题目详情
16.观察下列等式
若锐角θ满足sinθ+cosθ=$\sqrt{2}$,则sinθcosθ=$\frac{1}{2}$
若锐角θ满足sin3θ+cos3θ=$\frac{{\sqrt{2}}}{2}$,则sinθcosθ=$\frac{1}{2}$
若锐角θ满足sin5θ+cos5θ=$\frac{{\sqrt{2}}}{4}$,则sinθcosθ=$\frac{1}{2}$
请你仔细观察上述几个等式的规律,写出一个一般性的命题:若锐角θ满足${sin^{2n+1}}θ+{cos^{2n+1}}θ=2{(\frac{{\sqrt{2}}}{2})^{2n+1}}(n∈N)$,则$sinθcosθ=\frac{1}{2}$或
若锐角θ满足${sin^{2n+1}}θ+{cos^{2n+1}}θ=\frac{{\sqrt{2}}}{2^n}(n∈N)$,则$sinθcosθ=\frac{1}{2}$..

分析 利用已知条件,找出概率写出结果即可.

解答 解:由:若锐角θ满足sinθ+cosθ=$\sqrt{2}$,则sinθcosθ=$\frac{1}{2}$
若锐角θ满足sin3θ+cos3θ=$\frac{{\sqrt{2}}}{2}$,则sinθcosθ=$\frac{1}{2}$
若锐角θ满足sin5θ+cos5θ=$\frac{{\sqrt{2}}}{4}$,则sinθcosθ=$\frac{1}{2}$
可以看出,等式左侧是正弦函数与余弦函数的奇数次幂的和,右侧是$\sqrt{2}$依次减半,推出结果是正弦函数与余弦函数乘积的结果为$\frac{1}{2}$.
可得一般性结论为:
若锐角θ满足${sin^{2n+1}}θ+{cos^{2n+1}}θ=2{(\frac{{\sqrt{2}}}{2})^{2n+1}}(n∈N)$,则$sinθcosθ=\frac{1}{2}$或
若锐角θ满足${sin^{2n+1}}θ+{cos^{2n+1}}θ=\frac{{\sqrt{2}}}{2^n}(n∈N)$,则$sinθcosθ=\frac{1}{2}$.
故答案为:若锐角θ满足${sin^{2n+1}}θ+{cos^{2n+1}}θ=2{(\frac{{\sqrt{2}}}{2})^{2n+1}}(n∈N)$,则$sinθcosθ=\frac{1}{2}$或
若锐角θ满足${sin^{2n+1}}θ+{cos^{2n+1}}θ=\frac{{\sqrt{2}}}{2^n}(n∈N)$,则$sinθcosθ=\frac{1}{2}$.

点评 本题考查归纳推理的应用,找出规律是解题 关键,考查观察能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.在?ABCD中,E是AB边所在线上任意一点,若$\overrightarrow{CE}=-\overrightarrow{CA}+λ\overrightarrow{DA}$(λ∈R),则λ=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知复数z=a+i(a∈R),且(1+2i)z为纯虚数.
(Ⅰ)求复数z;
(Ⅱ)若ω=$\frac{z}{2-i}$,求复数ω的模|ω|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.现有20个数,它们构成一个以1为首项,-2为公比的等比数列,若从这20个数中随机抽取一个数,则它大于8的概率为(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.二次函数f(x)=ax2+bx+c(a>0)的图象与x轴交点的横坐标为-5和3,则这个二次函数的单调减区间为(  )
A.(-∞,-1]B.[2,+∞)C.(-∞,2]D.[-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知数列{an}满足对n∈N*,有an+1=$\frac{1}{{1-{a_n}}}$,若a1=$\frac{1}{2}$,则a2015=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆4x2+y2=1及直线y=x+m,求直线被椭圆截得的线段AB最长时的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C的方程为$\frac{{x}^{2}}{{m}^{2}}$+$\frac{{y}^{2}}{4{m}^{2}}$=1(m>0),如图所示,在平面直角坐标系xOy中,△ABC的三个顶点的坐标分别为A(1,0),B(0,2),C(1,2)
(Ⅰ)当椭圆C与直线AB相切时,求m的值;
(Ⅱ)若椭圆C与△ABC三边无公共点,求m的取值范围;
(Ⅲ)若椭圆C与△ABC三边相交于不同的两点M,N,求△OMN的面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.阅读如图所示的程序框图,运行相应的程序,当输入x的值为-25时,输出x的值为(  )
A.9B.3C.1D.-1

查看答案和解析>>

同步练习册答案