分析 (1)求出直线的斜率,利用点斜式求出直线方程;
(2)根据题意,△AOB是以AB为斜边的直角三角形,因此外接圆是以AB为直径的圆.由此算出AB中点C的坐标和AB长度,结合圆的标准方程形式,即可求出△AOB的外接圆的方程.
解答 解:(1)由已知得${k_{AB}}=\frac{2-0}{0-4}=-\frac{1}{2}$.
由点斜式$y-3=-\frac{1}{2}(x-2)$
∴直线l的方程x+2y-8=0.
(2)OA⊥OB,可得△AOB的外接圆是以AB为直径的圆
∵AB中点为C(2,1),|AB|=2$\sqrt{5}$.∴圆的圆心为C(2,1),半径为r=$\sqrt{5}$.
可得△AOB的外接圆的方程为(x-2)2+(y-1)2=5.
点评 本题着重考查了直线方程,考查圆的方程、中点坐标公式和三角形形状的判断等知识,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{8}$ | B. | $\frac{5}{8}$ | C. | $\frac{1}{4}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{x^2}{3}+\frac{1}{x}$ | B. | ${x^2}-\frac{1}{x^2}$ | C. | $-{x^2}-\frac{1}{x^2}$ | D. | x2+lnx |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 甲班(A方式) | 乙班(B方式) | 总计 | |
| 成绩优秀 | 12 | 4 | 20 |
| 成绩不优秀 | 38 | 46 | 80 |
| 总计 | 50 | 50 | 100 |
| P(K2≥k) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
| k | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{6}$ | B. | $\frac{3}{4}$ | C. | $\frac{1}{2}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 年份 | 2006 | 2007 | 2008 | 2009 | 2010 |
| x用户(万户) | 1 | 1.1 | 1.5 | 1.6 | 1.8 |
| y(万立方米) | 6 | 7 | 9 | 11 | 12 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com