分析 (1)由已知利用基本不等式,构造关于$\sqrt{xy}$的一元二次不等式,求解即可.
(2)由已知利用基本不等式求出3x+y的最小值,代入6≥m2-m求出m的范围即可.
解答 解:(1)∵正实数x,y满足等式$\frac{1}{x}$+$\frac{3}{y}$=2,
∴$\frac{y+3x}{xy}$=2,即y+3x=2xy,
∵y+3x=2xy,
∴xy=$\frac{1}{2}$(y+3x)=$\frac{1}{2}$(y+3x)×$\frac{1}{2}$($\frac{1}{x}$+$\frac{3}{y}$)=$\frac{1}{4}$(y+3x)×($\frac{1}{x}$+$\frac{3}{y}$)=$\frac{1}{4}$(6+$\frac{y}{x}$+$\frac{9x}{y}$),
又$\frac{y}{x}$+$\frac{9x}{y}$≥2$\sqrt{\frac{y}{x}•\frac{9x}{y}}$=6,当且仅当$\frac{y}{x}$=$\frac{9x}{y}$即y=3x时等号成立,
∴xy=$\frac{1}{4}$(6+$\frac{y}{x}$+$\frac{9x}{y}$)≥$\frac{1}{4}$×12=3,
即xy最小值为3,当y=3x=3是取得最小值.
(2)∵3x+y=2xy≥6,
∴6≥m2-m恒成立,
即(m+2)(m-3)≤0,
∴-2≤m≤3,
故实数m的取值范围[-2,3]
点评 本题考查恒成立问题,考查了利用基本不等式求最值,是中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1023 | B. | 1024 | C. | 1025 | D. | 1026 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a<0 | B. | a≤0 | C. | a≤-$\frac{11}{8}$ | D. | a<-$\frac{11}{8}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=$\sqrt{x}$ | B. | y=$\frac{1}{x-1}$ | C. | y=log0.5x | D. | y=ex |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0<x1x2<$\frac{1}{4}$ | B. | $\frac{1}{4}$<x1x2<$\frac{1}{2}$ | C. | $\frac{1}{2}$<x1x2<1 | D. | x1x2>1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com