精英家教网 > 高中数学 > 题目详情
20.设点(a,b)是区域$\left\{\begin{array}{l}{x+y-4≤0}\\{x>0}\\{y>0}\end{array}\right.$内的任意一点,则使函数f(x)=ax2-2bx+3在区间[$\frac{1}{2}$,+∞)上是增函数的概率为$\frac{1}{3}$.

分析 作出不等式组对应的平面区域,求出函数f(x)=ax2-2bx+3在区间[$\frac{1}{2}$,+∞)上是增函数的等价条件,求出对应的面积,根据几何概型的概率公式进行求解即可.

解答 解:作出不等式组对应的平面区域如图:
若f(x)=ax2-2bx+3在区间[$\frac{1}{2}$,+∞)上是增函数,
则$\left\{\begin{array}{l}{a>0}\\{-\frac{-2b}{2a}=\frac{b}{a}≤\frac{1}{2}}\end{array}\right.$,即$\left\{\begin{array}{l}{a>0}\\{a-2b≥0}\end{array}\right.$,
则A(0,4),B(4,0),由$\left\{\begin{array}{l}{a+b-4=0}\\{a-2b=0}\end{array}\right.$得$\left\{\begin{array}{l}{a=\frac{8}{3}}\\{b=\frac{4}{3}}\end{array}\right.$,
即C($\frac{8}{3}$,$\frac{4}{3}$),
则△OBC的面积S=$\frac{1}{2}$×4×$\frac{4}{3}$=$\frac{8}{3}$.
△OAB的面积S=$\frac{1}{2}$×4×4=8.
则使函数f(x)=ax2-2bx+3在区间[$\frac{1}{2}$,+∞)上是增函数的概率P=$\frac{{S}_{△OBC}}{{S}_{△OAB}}$=$\frac{\frac{8}{3}}{8}=\frac{1}{3}$.
故答案为:$\frac{1}{3}$.

点评 本题主要考查几何概型的概率的概率公式,作出不等式组对应的平面区域,求出对应的面积是解决本题的关键,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.曲线f(x)=ln(2x+1)在点(0,f(0))处的切线方程为(  )
A.y=xB.y=x+1C.y=2xD.y=2x+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知曲线f(x)=x3-3x及曲线y=f(x)上一点P(1,-2).
(I) 求曲线y=f(x)在P点处的切线方程;
(Ⅱ)求曲线y=f(x)过P点的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知p:$\frac{1}{x-2}$<1,q:|x-a|<1,若¬p是¬q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知A,B为双曲线E的左,右顶点,点M在双曲线E上,△ABM为等腰三角形,其中一角为30°,则双曲线E的离心率为(  )
A.$\sqrt{5}$B.2C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.平面直角坐标系xOy中,椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+y2=1(a>1)的长轴长为2$\sqrt{2}$,抛物线C2:y2=2px(p>0)的焦点F是椭圆C1的右焦点.
(Ⅰ)求椭圆C1与抛物线C2的方程;
(Ⅱ)过点F作直线l交抛物线C2于A,B两点,射线OA,OB与椭圆C1的交点分别为C,D,若$\overrightarrow{OA}$•$\overrightarrow{OB}$=2$\sqrt{6}$$\overrightarrow{OC}$•$\overrightarrow{OD}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知f($\frac{1}{x}}$)=$\frac{x}{1+x}$,则f′(1)等于(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.-$\frac{1}{4}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.5人站成一排,甲、乙两人相邻的不同站法有(  )
A.120种B.72种C.48种D.24种

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=3mx-$\frac{1}{x}$-(3+m)lnx,若对任意的m∈(4,5),x1,x2∈[1,3],恒有(a-ln3)m-3ln3>|f(x1)-f(x2)|成立,则实数a的取值范围是[$\frac{37}{6}$,+∞).

查看答案和解析>>

同步练习册答案