精英家教网 > 高中数学 > 题目详情
已知变量x,y满足
2x-y≤0
x-2y+3≥0
x≥0
,则2x+y的最大值为
 
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式组对应的平面区域,设z=x+y,利用z的几何意义,先求出z的最大值,即可得到结论.
解答: 解:作出不等式组对应的平面区域如图:

设z=x+y,则y=-x+z,
平移直线y=-x+z,由图象可知当直线y=-x+z经过点A时y=-x+z的截距最大,此时z最大.
2x-y=0
x-2y+3=0

解得
x=1
y=2
,即A(1,2),
代入z=x+y得z=1+2=3.
即z=x+y最大值为3,
∴2x+y的最大值为23=8.
故答案为:8.
点评:本题主要考查线性规划的应用以及指数函数的运算,利用z的几何意义结合数形结合是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=4cosxsin(x+
π
6
)-1,x∈R.
(1)求f(0)的值;
(2)若将y=f(x)的图象向右平移ϕ(ϕ>0)个单位,所得到的曲线恰好经过坐标原点,求ϕ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正方体ABCD-A1B1C1D1的棱长为2,P是AA1的中点,E是BB1上的点,则PE+EC的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

有下列命题:
①已知
a
 
b
是平面内两个非零向量,则平面内任一向量
c
都可表示为λ
a
b
,其中λ,μ∈R;
②对任意平面四边形ABCD,点E、F分别为AB、CD的中点,则2
EF
=
AD
+
BC

③直线x-y-2=0的一个方向向量为(1,-1);
④已知
a
b
夹角为
π
6
,且
a
b
=
3
,则|
a
-
b
|的最小值为
3
-1

a
c
是(
a
b
)•
c
=
a
•(
b
c
)的充分条件;
其中正确的是
 
(写出所有正确命题的编号).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的前n项和是Sn=-
1
2
n2-
a8
2
n
,则使an<-2010的最小正整数n等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

“a<0”是“函数f(x)=|ax2-x|在区间(0,+∞)上单调递增”的
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x=2m-1,m∈N+},B={x|x=2m+1,m∈N+},则集合A与B之间的关系是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设实数x,y满足不等式组
(x-y)(x+y-5)≥0
1≤x≤4
,则z=2x+y的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

一个水平放置的平面图形的斜二测直观图是直角梯形(如图).∠ABC=45°,AB=AD=1,DC⊥BC,则这个平面图形的面积为(  )
A、
1
4
+
2
4
B、2+
2
2
C、
1
4
+
2
2
D、
1
2
+
2

查看答案和解析>>

同步练习册答案