精英家教网 > 高中数学 > 题目详情
已知m∈R,设函数f(x)=x3-3(m+1)x2+12mx+1.
(Ⅰ) 若f(x)在(0,3)上无极值点,求m的值;
(Ⅱ) 若存在x0∈(0,3),使得f(x0)是f(x)在[0,3]上的最值,求m的取值范围.
考点:利用导数求闭区间上函数的最值,利用导数研究函数的极值
专题:导数的综合应用
分析:(Ⅰ)求函数的导数,根据函数极值和导数之间的关系即可求出m的值;
(Ⅱ)求函数的导数,根据函数在[0,3]上的最值,建立条件关系即可求出m的取值范围.
解答: 解:(Ⅰ) 由题意知
f′(x)=3x2-6(m+1)x+12m=3(x-2)(x-2m).
由于f(x)在[0,3]上无极值点,故2m=2,所以m=1.                     
(Ⅱ) 由于f′(x)=3(x-2)(x-2m),故
(i) 当2m≤0或2m≥3,即m≤0或m≥
3
2
时,
取x0=2即满足题意.
此时m≤0或m≥
3
2

(ii) 当0<2m<2,即0<m<1时,列表如下:

x 0 (0,2m) 2m (2m,2) 2 (2,3) 3
f′(x) + 0 - 0 +
f(x) 1 单调递增 极大值 单调递减 极小值 单调递增 9m+1
故f(2)≤f(0)或 f(2m)≥f(3),
即-4+12m+1≤1或-4m3+12m2+1≥9m+1,
从而3m≤1或-m(2m-3)2≥0,
所以m≤
1
3
或m≤0或m=
3
2

此时0<m≤
1
3

(iii) 当2<2m<3,即1<m<
3
2
时,列表如下:

x 0 (0,2) 2 (2,2m) 2m (2m,3) 3
f′(x) + 0 - 0 +
f(x) 1 单调递增 极大值 单调递减 极小值 单调递增 9m+1
故f(2m)≤f(0)或  f(2)≥f(3),
即-4m3+12m2+1≤1或-4+12m+1≥9m+1,
从而-4m2 (m-3)≤0 或 3m≥4,
所以m=0或m≥3或 m≥
4
3

此时
4
3
≤m<
3
2

综上所述,实数m的取值范围是
m≤
1
3
或m≥
4
3
点评:本题主要考查极值的概念、利用导数研究函数的单调性等性质等基础知识,同时考查分类讨论等综合解题能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知四棱锥P-ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=
1
2
,AB=1,M是PB的中点.
(1)求异面直线AC与PB所成的角的余弦值;
(2)证明:CM∥面PAD.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+2x2-ax.对于任意实数x恒有f′(x)≥2x2+2x-4
(Ⅰ)求实数a的最大值;
(Ⅱ)当a最大时,函数F(x)=f(x)-x-k有三个零点,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在如图的多面体中,EF⊥平面AEB,AE⊥EB,AD∥EF,EF∥BC,BC=2AD=4,EF=3,AE=BE=2,G是BC的中点.
(Ⅰ)求证:AB∥平面DEG;
(Ⅱ)求点B到平面DEG的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)在△ABC中,sinA=
5
13
,cosB=
3
5
,求cosC的值.
(2)已知cos(
π
4
+x)=
3
5
17
12
π<x
7
4
π,求
sin2x+2sin2x
1-tanx
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

cos82.5°cos52.5°+cos7.5°cos37.5°=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设Sn是等差数列{an}的前n项和,已知a3=5,a5=9,则S7等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A为函数f(x)=x4+x图象上一点,在A处的切线平行于直线y=5x,则A点坐标为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

三个平面最多把空间分割成
 
个部分.

查看答案和解析>>

同步练习册答案