精英家教网 > 高中数学 > 题目详情
15.已知实数x,y满足$\left\{\begin{array}{l}\frac{1}{2}x-y≤0\\ x-7≤0\\ 2x-y-4≥0\end{array}\right.$,则z=2x-3y的最小值为-16.

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.

解答 解:由约束条件$\left\{\begin{array}{l}\frac{1}{2}x-y≤0\\ x-7≤0\\ 2x-y-4≥0\end{array}\right.$作出可行域如图,

联立$\left\{\begin{array}{l}{x=7}\\{2x-y-4=0}\end{array}\right.$,解得A(7,10),
化目标函数z=2x-3y为$y=\frac{2}{3}x-\frac{z}{3}$,由图可知,当直线$y=\frac{2}{3}x-\frac{z}{3}$过A时,直线在y轴上的截距最大,z有最小值为-16.
故答案为:-16.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知集合A={x|x2>x},B={-1,0,$\frac{1}{2}$,2},则A∩B=(  )
A.{0,2}B.{-1,2}C.$\{0,\frac{1}{2}\}$D.$\{\frac{1}{2},2\}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知公差不为零的等差数列{an}满足:a3+a8=20,且a5是a2与a14的等比中项.
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在正三棱柱ABC-A1B1C1中,A1B1=2,AA1=h,E为BB1的中点.
(1)若h=2,请画出该正三棱柱的正(主)视图与左(侧)视图.
(2)求证:平面A1EC⊥平面AA1C1C;
(3)当平面A1EC与平面A1B1C1所成的锐二面角为45°时,求该正三棱柱外接球的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如果函数y=f(x)的定义域为R,且存在实常数a,使得对于定义域内任意x,都有f(x+a)=f(-x)成立,则称此函数f(x)具有“P(a)性质”.
(1)判断函数y=cosx是否具有“P(a)性质”,若具有“P(a)性质”,求出所有a的值的集合;若不具有“P(a)性质”,请说明理由;
(2)已知函数y=f(x)具有“P(0)性质”,且当x≤0时,f(x)=(x+m)2,求函数y=f(x)在区间[0,1]上的值域;
(3)已知函数y=g(x)既具有“P(0)性质”,又具有“P(2)性质”,且当-1≤x≤1时,g(x)=|x|,若函数y=g(x)的图象与直线y=px有2017个公共点,求实数p的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若圆C1(x-m)2+(y-2n)2=m2+4n2+10(mn>0)始终平分圆C2:(x+1)2+(y+1)2=2的周长,则$\frac{1}{m}$+$\frac{2}{n}$的最小值为(  )
A.$\frac{9}{2}$B.9C.6D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数$f(x)=\frac{{{e^x}-1}}{x}$,
(1)求f(x)在x=1处的切线方程;
(2)证明:对任意a>0,当0<|x|<ln(1+a)时,|f(x)-1|<a.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.某化肥厂用三种原料生产甲乙两种肥料,生产1吨甲种肥料和生产1吨乙种肥料所需三种原料的吨数如右表所示:已知生产1吨甲种肥料产生的利润2万元,生产1吨乙种肥料产生的利润为3万元,现有A种原料20吨,B种原料36吨,C种原料32吨,在此基础上安排生产,则生产甲乙两种肥料的利润之和的最大值为(  )
ABC
242
448
A.17万元B.18万元C.19万元D.20万元

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.f(x)=|x-2017|+|x-2016|+…+|x-1|+|x+1|+…+|x+2016|+|x+2017|,在不等式e2017x≥ax+1(x∈R)恒成立的条件下等式f(2018-a)=f(2017-b)恒成立,求b的取值集合(  )
A.{b|2016≤b≤2018}B.{2016,2018}C.{2018}D.{2017}

查看答案和解析>>

同步练习册答案