精英家教网 > 高中数学 > 题目详情
9.已知函数f(x)=$\left\{{\begin{array}{l}{{{(\frac{1}{2})}^x}+\frac{3}{4},x≥2}\\{{{log}_2}x,0<x<2}\end{array}}$若函数g(x)=f(x)-k有两个不同的零点,则实数k的取值范围是(  )
A.0<k<1B.k>1C.$\frac{3}{4}$<k<1D.k>1或k=$\frac{3}{4}$

分析 由题意可得函数f(x)的图象与直线y=k有二个不同的交点,结合图象求出实数k的取值范围.

解答 解:由题意可得函数f(x)的图象与直线y=k有二个不同的交点,如图所示:
故实数k的取值范围是($\frac{3}{4}$,1),
故选C.

点评 本题主要考查函数的零点与方程的根的关系,体现了化归与转化、数形结合的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.△ABC中,∠C=90°,且CA=3,点M满足 $\overrightarrow{BM}$=2$\overrightarrow{MA}$,则$\overrightarrow{CM}$•$\overrightarrow{CA}$=6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设α为△ABC的内角,且tanα=-$\frac{3}{4}$,则cos2α的值为(  )
A.$\frac{7}{25}$B.-$\frac{24}{25}$C.-$\frac{1}{25}$D.$\frac{1}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若不等式$|{x-3}|+|{x+2}|≥{a^2}+\frac{1}{2}a+2$对任意实数x恒成立,则实数a的取值范围为$[{-2,\frac{3}{2}}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如图所示,椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1的左,右顶点分别为A,A′,线段CD是垂直于椭圆长轴的弦,连接AC,DA′相交于点P,则点P的轨迹方程为$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{4}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}满足a2=1,且其前n项和为${S_n}={n^2}-pn$
(1)求实数p的值及数列{an}的通项公式
(2)若数列{bn}为等比数列,公比为p,{bn}前n项和为Tn,且T5<S5,求b1取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知两点F1(-4,0),F2(4,0),到它们的距离的和是10的点M的轨迹方程是$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数$y={log_{\frac{1}{2}}}({-{x^2}+2x+1})$(x∈[0,$\sqrt{2}$])的值域是-[-1,0].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若sin(θ-$\frac{π}{6}$)=$\frac{1}{4}$,$θ∈({\frac{π}{6},\frac{2π}{3}})$,则$cos({\frac{3π}{2}+θ})$的值为(  )
A.$\frac{{\sqrt{15}+\sqrt{3}}}{8}$B.$\frac{{\sqrt{15}-\sqrt{3}}}{8}$C.$\frac{{-\sqrt{15}+\sqrt{3}}}{8}$D.$\frac{{-\sqrt{15}-\sqrt{3}}}{8}$

查看答案和解析>>

同步练习册答案