精英家教网 > 高中数学 > 题目详情
13.在△ABC中,$\overrightarrow{AB}$=$\overrightarrow{m}$,$\overrightarrow{AC}$=$\overrightarrow{n}$,若点D满足$\overrightarrow{BD}$=2$\overrightarrow{DC}$,则$\overrightarrow{AD}$=(  )
A.$\frac{1}{3}\overrightarrow{n}$+$\frac{2}{3}\overrightarrow{m}$B.$\frac{5}{3}$$\overrightarrow{m}$-$\frac{2}{3}\overrightarrow{n}$C.$\frac{2}{3}\overrightarrow{n}$-$\frac{1}{3}\overrightarrow{m}$D.$\frac{2}{3}\overrightarrow{n}$+$\frac{1}{3}\overrightarrow{m}$

分析 根据向量减法的几何意义,便可由$\overrightarrow{BD}=2\overrightarrow{DC}$得,$\overrightarrow{AD}-\overrightarrow{AB}=2(\overrightarrow{AC}-\overrightarrow{AD})$,进行向量的数乘运算便可用$\overrightarrow{m},\overrightarrow{n}$表示出$\overrightarrow{AD}$.

解答 解:$\overrightarrow{BD}=2\overrightarrow{DC}$;
∴$\overrightarrow{AD}-\overrightarrow{AB}=2(\overrightarrow{AC}-\overrightarrow{AD})$;
∴$\overrightarrow{AD}=\frac{1}{3}\overrightarrow{AB}+\frac{2}{3}\overrightarrow{AC}$=$\frac{1}{3}\overrightarrow{m}+\frac{2}{3}\overrightarrow{n}$.
故选:D.

点评 考查向量减法的几何意义,以及向量的数乘运算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=|log0.5x|,若正实数m,n(m<n)满足f(m)=f(n),且f(x)在区间[m2,n]上的最大值为4,则n-m=(  )
A.$\frac{3}{2}$B.$\frac{15}{4}$C.$\frac{63}{4}$D.$\frac{255}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若平面点集M满足:任意点(x,y)∈M,存在t∈(0,+∞),都有(tx,ty)∈M,则称该点集M是“t阶聚合”点集.现有四个命题:
①若M={(x,y)|y=2x},则存在正数t,使得M是“t阶聚合”点集;
②若M={(x,y)|y=x2},则M是“$\frac{1}{2}$阶聚合”点集;
③若M={(x,y)|x2+y2+2x+4y=0},则M是“2阶聚合”点集;
④若M={(x,y)|x2+y2≤1}是“t阶聚合”点集,则t的取值范围是(0,1].
其中正确命题的序号为(  )
A.①②B.②③C.①④D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=x2-1g(10x+10),若0<b<1,则f(b)的值满足(  )
A.f(b)>f(-$\frac{9}{10}$)B.f(b)>0C.f(b)>f($\frac{3}{2}$)D.f(b)<f($\frac{3}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.通过市场调查知某商品每件的市场价y(单位:圆)与上市时间x(单位:天)的数据如下:
 上市时间x天 4 10 36
 市场价y元 90 51 90
根据上表数据,当a≠0时,下列函数:①y=ax+k;②y=ax2+bx+c;③y=alogmx中能恰当的描述该商品的市场价y与上市时间x的变化关系的是(只需写出序号即可)②.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=2sin($\frac{x}{4}$+2),如果存在实数x1,x2使得对任意的实数,都有f(x1)≤f(x2),则|x1-x2|的最小值是4π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数$f(x)=4sinxcos({x+\frac{π}{3}})+\sqrt{3}$.x∈R,
(1)求f(x)的最小正周期;
(2)求f(x)在区间[-$\frac{π}{4}$,$\frac{π}{3}$]上的最大值和最小值及取得最值时对应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.Sn为数列{an}的前n项和,己知an>0,an2+3an=6Sn+4.
(I)求{an}的通项公式:
(Ⅱ)设bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知一个三棱锥的正视图,侧视图均为直角三角形,其形状及尺寸如图,则该三棱锥的俯视图的面积为(  )
A.3B.6C.$\frac{9}{2}$或9D.3或6

查看答案和解析>>

同步练习册答案