精英家教网 > 高中数学 > 题目详情
设M(a,b),且满足a2+b2=1,已知圆C:(x-a)2+(y-b)2=1,直线l:y=kx,下列四个命题:
①对满足条件的任意点M和任意实数k,直线l和圆C有公共点;
②对满足条件的任意点M和任意实数k,直线l和圆C相切;
③对任意实数k,必存在满足条件的点M,使得直线l和圆C相切;
④对满足条件的任意点M,必存在实数k,使得直线l和圆C相切.
其中正确的命题是
 
.(写出所有正确命题的序号)
考点:命题的真假判断与应用,直线与圆的位置关系
专题:直线与圆,简易逻辑
分析:利用圆心到原点的距离与半径的关系判断①的正误;
通过①即可直接判断②的正误;
通过圆心圆的关系判断③的正误;
利用圆的圆心在x轴时,判断直线不存在判断④的正误;
解答: 解:对于①,∵直线l:y=kx经过定点O(0,0),依题意知,O(0,0)为圆C:(x-a)2+(y-b)2=1的点,
∴对满足条件的任意点M和任意实数k,直线l和圆C有公共点;
∴①正确;
 对于②,由①可知,直线与圆可以相交也能相切,∴②不正确;
对于③,由①可知,圆经过原点,直线经过原点,∴圆心与原点连线与直线垂直时,存在直线与圆相切,∴③正确;
对于④,当圆的圆心在x轴时,直线不存在斜率,∴④不正确;
∴故答案为:①③.
点评:本题考查命题真假的判断,直线与圆的位置关系的判断,基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知实数x,y满足方程x+2y=6,当1≤x≤3时,求
y-1
x-2
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:sin(π+θ)=-
1
3
,求值:
cos(3π+θ)
cos(-θ)[cos(π-θ)-1]
+
cos(θ-2π)
cos2θsin
3
2
π+cosθ

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列前10项的和为10,前20项的和为30,则前40项的和为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

点(a,b)关于直线x+y=0对称的点的坐标是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

an=
n
0
(2x+1)dx,则数列{
1
an
}的前n项和Sn=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

化简sin20°cos40°+cos20°sin40°=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

把一个n位数从左到右的每个数字依次记为a1,a2,a3,…,ak,…,an,如果k+ak(k=1,2,3,…,n)都是完全平方数,则称这个数为“方数”.现将1,2,3按照任意顺序排成一个没有重复数字的三位数,这个数是“方数”的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

将函数y=f(x)的图象向左平移
π
4
个单位,再向上平移1个单位后得到的函数对应的表达式为y=2cos2x,则函数f(x)的表达式可以是(  )
A、2sinx
B、2cosx
C、sin2x
D、cos2x

查看答案和解析>>

同步练习册答案