精英家教网 > 高中数学 > 题目详情
已知椭圆Γ:
x2
a2
+
y2
b2
=1(a>b>0)的右焦点为F,椭圆的上顶点和两焦点连线构成等边三角形且面积为
3

(Ⅰ)求椭圆Γ的标准方程;
(Ⅱ)若直线l:x=my+q(m≠0)与椭圆Γ交于不同的两点A、B,设点A关于椭圆长轴的对称点为A1,试求A1、F、B三点共线的充要条件.
考点:直线与圆锥曲线的综合问题
专题:圆锥曲线中的最值与范围问题
分析:(1)由题意知a=2c,bc=
3
,由此能求出椭圆Γ的标准方程是
x2
4
+
y2
3
=1

(2)联立
x=my+q
x2
4
+
y2
3
=1
⇒(3m2+4)y2+6mqy+(3q2-12)=0
,由此根的判别式、韦达定理结合已知条件推导出A1,F,B三点共线的充要条件是|m|>2且q=4.
解答: 解:(1)由题意知a=2c,bc=
3
,…(2分)
a=2,b=
3

椭圆Γ的标准方程是
x2
4
+
y2
3
=1
.…(4分)
(2)联立
x=my+q
x2
4
+
y2
3
=1
⇒(3m2+4)y2+6mqy+(3q2-12)=0
…(5分)
由△=12[3m2q2-(3m2+4)(q2-4)]=48(3m2+4-q2)>0
得3m2+4-q2>0①…(7分)
记A(x1,y1),B(x2,y2),
y1+y2=
-6mq
3m2+4
y1y2=
3q2-12
3m2+4

∵F(1,0),∴
FA1
=(x1-1,-y1),
FB
=(x2-1,y2)

因A1,F,B三点共线,
∴(x1-1)y2-(x2-1)(-y1)=0…(10分)
∴(x1-1)y2-(x2-1)(-y1)=(my1+q-1)y2+(my2+q-1)y1
=2my1y2+(q-1)(y1+y2
=2m•
3q2-12
3m2+4
+(q-1)•
-6mq
3m2+4

=2m•
3q-12
3m2+4
,②
解得q=4,m≠0.…(12分)
由①②知A1,F,B三点共线的充要条件是|m|>2且q=4.…(13分)
点评:本题考查椭圆方程的求法,考查三点共线的充要条件的求法,解题时要认真审题,注意函数与方程思想的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

为了解某市市民对政府出台楼市限购令的态度,在该市随机抽取了50名市民进行调查,他们月收入(单位:百元)的频数分布及对楼市限购令的赞成人数如下表:
月收入[15,25)[25,35)[35,45)[45,55)[55,65)[65,75)
频数510151055
赞成人数488521
将月收入不低于55的人群称为“高收入族”,月收入低于55的人群称为“非高收人族”.
(Ⅰ)根据已知条件完成下面的2×2列联表,有多大的把握认为赞不赞成楼市限购令与收入高低有关?
已知:Χ2=
(a+b+c+d)(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

当Χ2<2.706时,没有充分的证据判定赞不赞成楼市限购令与收入高低有关;
当Χ2>2.706时,有90%的把握判定赞不赞成楼市限购令与收入高低有关;
当Χ2>3.841时,有95%的把握判定赞不赞成楼市限购令与收入高低有关;
当Χ2>6.635时,有99%的把握判定赞不赞成楼市限购令与收入高低有关.
非高收入族高收入族总计
赞成
不赞成
总计
(Ⅱ)现从月收入在[55,65)的人群中随机抽取两人,求所抽取的两人中至少一人赞成楼市限购令的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin2x+2sinxcosx-cos2x
(1)求函数f(x)的最小正周期;    
(2)求函数f(x)在[0,
π
2
]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆M和圆P:x2+y2-2
2
x-10=0相内切,且过定点Q(-
2
,0).
(Ⅰ)求动圆圆心M的轨迹方程;
(Ⅱ)不垂直于坐标的直线l与动圆圆心M的轨迹交于A、B两点,且线段AB的垂直平分线经过点(0,-
1
2
),求△AOB(O为原点)面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线y=
3
3
x与圆心在x轴正半轴、半径为2的圆C交于两点A、B,且弦AB的长为2
3

(Ⅰ)求圆C的方程;
(Ⅱ)若点P(m,n)在圆C上,求
3
m+n的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥A-BOC中,OA,OB,OC两两垂直,OA=OB=OC=2,E,F分别是棱AB,AC的中点.
(1)求证:AC⊥平面BOF;
(2)过EF作平面与棱OA,OB,OC或其延长线分别交于点A1,B1,C1,已知OA1=
3
2
,求直线OC1与平面A1B1C1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

a
=(1+cosα,sinα),
b
=(1-cosβ,sinβ),
c
=(1,0),α∈(0,π),β∈(π,2π),
a
c
的夹角为θ1
b
c
的夹角为θ2,若θ12=
π
4
,求sin
α-β
2
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

一同学在电脑中打出如下若干个圆(图中●表示实心圆,○表示空心圆):○●○○●○○○●○○○○●○○○○○●,若将此若干个圆依次复制得到一系列圆,那么在前2006个圆中有
 
个实心圆.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={1,2,3},B={1,m},满足A∩B={1,2},则m=
 

查看答案和解析>>

同步练习册答案