精英家教网 > 高中数学 > 题目详情
14.如图,E,F分别是正方形ABCD的边BC,CD的中点,沿图中虚线折起来,它能形成怎样的几何体?

分析 根据图形折叠后B、C、D三点重合,得到直三棱锥,画出图形,说明结论即可.

解答 解:由题意得,沿图中虚线折叠后,得到直三棱锥,
且三棱锥的底面为等腰直角△EFC,高为AC;
如图所示

点评 本题考查了平面图形折叠后所得到空间图形的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知定义在R上的偶函数f(x),满足f(x+4)=f(x),f(x)=sinπx+2|sinπx|,x∈[0,2],函数g(x)=f(x)-loga(x+$\frac{3}{2}$),若以g(x)=0在区间[-1,3]上至少6个根,则a的取值范围为(  )
A.[${4}^{\frac{1}{3}}$,+∞)B.[${4}^{\frac{1}{3}}$,6]C.[4,+∞)D.[3,4]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.记等差数列{an}的前n项和为Sn,若S3=2a3,S5=15,则a2016=2016.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知命题p;$\frac{1}{2}$≤x≤1,命题q:(x-a)(x-a-1)≤0,若¬p是¬q的必要不充分条件,则实数a的取值范围是(  )
A.[0,$\frac{1}{2}$]B.[$\frac{1}{2}$,1]C.[$\frac{1}{3}$,$\frac{1}{2}$]D.$(\frac{1}{3},\frac{1}{2}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.不等式x2-2x+m>0在R上恒成立的必要不充分条件是(  )
A.m>2B.0<m<1C.m>0D.m>1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.(重点中学做)ABCD-A1B1C1D1是棱长为1的正方体,一个质点从A出发沿正方体的面对角线运动,每走完一条面对角线称为“走完一段”,质点的运动规则如下:运动第i段与第i+2所在直线必须是异面直线(其中i是正整数).质点走完的第99段与第1段所在的直线所成的角是(  )
A.B.30°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在函数y=xcosx,y=ex+x2,$y=lg\sqrt{{x^2}-2}$,y=xsinx偶函数的个数是(  )
A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若sin(x+$\frac{π}{6}$)=$\frac{1}{4}$,则sin($\frac{5π}{6}$-x)+sin2($\frac{π}{3}$-x)+cos(2x+$\frac{π}{3}$)=$\frac{33}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设关于x的一元二次方程为x2+2ax+b2=0.
(1)若a是从-2,1,2,3四个数中任取的一个数,b是从0,1,2三个数中任取的一个数,求上述方程有实根的概率.
(2)若a是从区间[-3,0]中任取的一个数,b是从区间[-2,0]中任取的一个数,求上述方程有实根的概率.

查看答案和解析>>

同步练习册答案