精英家教网 > 高中数学 > 题目详情
18.一个盒子中装有2个红球和2个白球,这4个球除颜色外完全相同.
(1)无放回的从中任取2次,每次取1个,取出的2个都是红球的概率;
(2)有放回的从中任取2次,每次取1个,取出的2个都是红球的概率.

分析 (1)记两个红球为a1,a2,两个白球为b1,b2,利用列举法能求出取出的2个都是红球的概率.
(2)利用列举法求出有放回的取两个球的所有情况和取到两个红球的所有情况,由此能求出取出的2个都是红球的概率.

解答 解:(1)记两个红球为a1,a2;两个白球为b1,b2
无放回的取球共有:
(a1,a2),(a2,a1),(b1,b2),(b2,b1),(a1,b1),(a1,b2),(a2,b1),
(a2,b2),(b1,a1),(b1,a2),(b2,a1),(b2,a2)共12情况,
取到两个红球的情况2种(3分)
∴取出的2个都是红球的概率$P(A)=\frac{1}{6}$(5分)
(2)有放回的取两个球共有:
(a1,a1),(a1,a2),(a1,b1),(a1,b2),(a2,a1),(a2,a2),
(a2,b1),(a2,b2),(b1,b1),(b1,b2),(b1,a1)(b1,a2),
(b2,b2),(b2,b1),(b2,a1),(b2,a2)共16情况,
取到两个红球的情况4种(8分)
取出的2个都是红球的概率$P(B)=\frac{4}{16}=\frac{1}{4}$(10分)

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知F1•F2是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两个焦点,其中F2与抛物线y2=12x的焦点重合,M是两曲线的一个交点,且有cos∠MF1F2•cos∠MF2F1=$\frac{7}{23}$,求椭圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知命题p:?x∈R,log2x=2015,则¬p为(  )
A.?x∉R,log2x=2015B.?x∈R,log2x≠2015
C.?x0∈R,log2x0=2015D.?x0∈R,log2x0≠2015

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.为了得到函数y=$\sqrt{2}$sin3x的图象,可以将函数y=$\sqrt{2}$sin(3x+$\frac{π}{2}$)的图象(  )
A.向右平移$\frac{π}{6}$个单位B.向右平移$\frac{π}{2}$个单位
C.向左平移$\frac{π}{6}$个单位D.向左平移$\frac{π}{2}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设F1、F2分别是椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{7}$=1的左、右焦点.若点P在椭圆上,且$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0,则|$\overrightarrow{P{F}_{1}}$+$\overrightarrow{P{F}_{2}}$|=6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.(log227)•(log34)=(  )
A.$\frac{1}{6}$B.2C.3D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设$α,β∈(0,\frac{π}{2})$且$tanα-tanβ=\frac{1}{cosβ}$,则(  )
A.$3α+β=\frac{π}{2}$B.$2α+β=\frac{π}{2}$C.$3α-β=\frac{π}{2}$D.$2α-β=\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.不等式|x+3|+|x-1|<a2-3a有解的实数a的取值范围是(  )
A.(-∞,-1)∪(4,+∞)B.(-1,4)C.(-∞,-4)∪(1,+∞)D.(-4,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.从3个英语教师和5个语文教师中选取4名教师参加外事活动,其中至少要有一名英语教师,则不同的选法共有(  )
A.$A_3^1A_5^3+A_3^2A_5^2+A_3^3A_5^1$
B.$C_3^1C_5^3+C_3^2C_5^2+C_3^3C_5^1$
C.$C_3^1C_7^3$
D.$({C_3^1C_5^3+C_3^2C_5^2+C_3^3C_5^1})A_4^4$

查看答案和解析>>

同步练习册答案