精英家教网 > 高中数学 > 题目详情
解方程组:
x+y+z=6
x2+y2+z2=14
yz=2
考点:函数的零点与方程根的关系
专题:计算题,推理和证明
分析:由x+y+z=6,可得y+z=6-x,两边平方可得y2+z2+2yz=(6-x)2,可求x,再求出y,z.
解答: 解:由x+y+z=6,可得y+z=6-x,
两边平方可得y2+z2+2yz=(6-x)2
∴14-x2+4=(6-x)2
∴x2-6x+9=0,
∴x=3,
∴y+z=3,
∵yz=2,
∴y=1,z=2或y=2,z=1,
∴方程组的解为
x=3
y=1
z=2
x=3
y=2
z=1
点评:本题考查解方程组,考查学生分析解决问题的能力,确定x是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若命题p:“存在x>1,使得x2+(m-3)x+3-m<0”为假命题,则m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=(1+x)lnx,g(x)=a(1-x)
(1)是否存在实数a,使g(x)是f(x)在x=1处的切线?
(2)若函数y=f(x)+g(x)是增函数,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某二人要对C处进行考察,甲在A处,乙在B处,基地在O处,此时∠AOB=90°,测得|AC|=5km,|BC|=
13
km,|AO|=|BO|=2km,如图所示,试问甲、乙二人应以什么方向走,才能使两人的行程之和最小?

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,圆C1和C2的参数方程分别是
x=2+2cosφ
y=2sinφ
(φ为参数)和
x=cosφ
y=1+sinφ
(φ为参数),以O为极点,x轴的正半轴为极轴建立极坐标系.
(1)求圆C1和C2的极坐标方程;
(2)射线OM:θ=a与圆C1的交点为O、P,与圆C2的交点为O、Q,求|OP|•|OQ|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,一个几何体的三视图如图所示,则该多面体的几条棱中,最长的棱的长度为(  )
A、3
2
B、
34
C、
41
D、3
5

查看答案和解析>>

科目:高中数学 来源: 题型:

从抛物线x2=4y上一点P(第一象限内)引x轴的垂线,垂足为M,设抛物线的焦点为F,若|PF|=5,则直线PM、x轴与抛物线围成的图形面积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某通讯船在A处测得正东北9 n mile的C处有一渔船,该渔船正沿南偏东75°的方向以5 n mile/h的速度前进,通讯船以7n mile/h的速度沿直线方向航行与渔船相会,问通讯船应沿什么方向航行,才能在最短时间内与渔船相会?并求出所需时间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
9
+
y2
m
=1与双曲线
x2
9
-
y2
n
=1的离心率是方程9x2-18x+8=0的两根,mn=
 

查看答案和解析>>

同步练习册答案