精英家教网 > 高中数学 > 题目详情
7.如图给出了计算S=$\frac{1}{2}$+$\frac{1}{4}$+…+$\frac{1}{60}$的值的程序框图,其中 ①②分别是(  )
A.i<30,n=n+2B.i>30,n=n+2C.i<30,n=n+1D.i>30,n=n+1

分析 分析要计算计算S=$\frac{1}{2}$+$\frac{1}{4}$+…+$\frac{1}{60}$的值需用“直到型”循环结构,按照程序执行运算.

解答 解:①的意图是为直到型循环结构构造满足跳出循环的条件,
分母是从2到60,故条件是i>30;
②的意图为表示各项的分母,
相邻分母相差2,
故语句是n=n+2.
故选:B.

点评 本题考查程序框图应用,重在解决实际问题,通过把实际问题分析,经判断写出需要填入的内容,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知a,b∈(0,1)记M=a•b,N=a+b-1则M与N的大小关系是(  )
A.M<NB.M=NC.M>ND.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.cos135°的值为(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{{\sqrt{2}}}{2}$D.$-\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,已知c-b=1,bc=30,S=$\frac{15}{2}$,求∠A和a.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数f(x)=sin(2x+φ),其中φ为实数,若f(x)≤|f($\frac{π}{6}$)|对(0,+∞)恒成立,且$f(\frac{π}{2})>f(π)$,则f(x)的单调递增区间是[$\frac{π}{6}$+kπ,$\frac{2π}{3}$+kπ],k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设函数$f(x)=sin(2x+\frac{π}{3})+\sqrt{3}-2\sqrt{3}{cos^2}$x+1
(1)求f(x)的最小正周期及其图象的对称中心;
(2)求函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.射洪县高三教学工作会将在射洪中学召开,学校安排A,B,C,D,E,F六名工作人员分配到繁荣,富强两个校区参与接待工作,若A,B必须同组,且每组至少2人,则不同的分配方法有(  )
A.18种B.20种C.22种D.24种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:
质量指标值分组[75,85)[85,95)[95,105)[105,115)[115,125)
频数62638228
(1)作出这些数据的频率分布直方图:
(2)估计这种产品质量指标值的中位数、平均数及方差(同一组中的数据用该组区间的中点值作代表)(精确到0.01);
(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.对某校小学生进行心理障碍测试,得到如下列联表(单位:名)
性别与心理障碍列联表
焦虑说谎懒惰总计
女生5101530
男生20105080
总计2520651110
试说明三种心理障碍分别与性别的关系如何.(我们规定:如果随机变量K2的观测值小于2.076,就认为没有充分的证据显示“两个分类变量有关系”.参考值图表见题3)

查看答案和解析>>

同步练习册答案