精英家教网 > 高中数学 > 题目详情
17.对某校小学生进行心理障碍测试,得到如下列联表(单位:名)
性别与心理障碍列联表
焦虑说谎懒惰总计
女生5101530
男生20105080
总计2520651110
试说明三种心理障碍分别与性别的关系如何.(我们规定:如果随机变量K2的观测值小于2.076,就认为没有充分的证据显示“两个分类变量有关系”.参考值图表见题3)

分析 对三种心理障碍焦虑、说谎、懒惰分别构造三个随机变量$K_1^2,K_2^2,K_3^2$,
由题中数据分别计算$K_1^2$、$K_2^2$、$K_3^2$的观测值,比较即可得出结论.

解答 解:对三种心理障碍焦虑、说谎、懒惰分别构造三个随机变量$K_1^2,K_2^2,K_3^2$,
由题中数据可得:$K_1^2$的观测值为k1=$\frac{110{×(5×60-25×20)}^{2}}{30×80×20×90}$≈0.8627<2.076,
$K_2^2$的观测值为${k_2}=\frac{{110×{{({10×70-20×10})}^2}}}{30×80×20×90}≈6.366>5.024$,
$K_3^2$的观测值为${k_3}=\frac{{110×{{({15×30-15×50})}^2}}}{30×80×20×90}≈1.410<2.076$;
所以样本数据没有充分的证据显示焦虑与性别有关,
有97.5%的把握认为说谎与性别有关,样本数据没有充分的证据显示懒惰与性别有关.

点评 本题考查了列联表与独立性检验的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.如图给出了计算S=$\frac{1}{2}$+$\frac{1}{4}$+…+$\frac{1}{60}$的值的程序框图,其中 ①②分别是(  )
A.i<30,n=n+2B.i>30,n=n+2C.i<30,n=n+1D.i>30,n=n+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=ln x,g(x)=$\frac{1}{2}$ax+b.
(1)若曲线f(x)与曲线g(x)在它们的公共点P(1,f(1))处具有公共切线,求g(x)的表达式;
(2)若φ(x)=$\frac{m(x-1)}{x+1}$-f(x)在[1,+∞)上是减函数,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知$tan({\frac{π}{7}+α})=5$,则$tan({\frac{6π}{7}-α})$=-5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知p:?a∈R,ea≥a+1,q:?α,β∈R,sin(α+β)=sinα+sinβ,则下列命题为真命题的是(  )
A.p∧(¬q)B.(¬p)∧qC.p∧qD.(¬p)∧(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若$\overrightarrow{a}$=(1,3),$\overrightarrow{b}$=(-2,4)则$\overrightarrow{a}$在$\overrightarrow{b}$方向上的投影是(  )
A.$\sqrt{10}$B.$\sqrt{10}$C.$\sqrt{5}$D.-$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某班某学习小组共7名同学站在一排照相,要求同学甲和乙必须相邻,同学丙和丁不能相邻,则不同的站法共有(  )种.
A.$A_5^5A_6^2$B.$A_2^2A_4^4A_4^2$C.$A_2^2A_5^5A_6^2$D.$A_2^2A_4^4A_5^2$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.数列{an}满足${a_{n+1}}=\left\{\begin{array}{l}2{a_n},0≤{a_n}≤\frac{1}{2}\\ 2{a_n}-1,\frac{1}{2}≤{a_n}<1\end{array}\right.$,若${a_1}=\frac{6}{7}$,则a2017的值为(  )
A.$\frac{6}{7}$B.$\frac{5}{7}$C.$\frac{3}{7}$D.$\frac{1}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知{an}满足an+1=an+2n,且a1=33,则$\frac{{a}_{n}}{n}$的最小值为$\frac{21}{2}$.

查看答案和解析>>

同步练习册答案