精英家教网 > 高中数学 > 题目详情
16.已知cos($\frac{π}{6}$+α)=$\frac{\sqrt{3}}{3}$,则cos($\frac{5π}{6}$-α)的值为-$\frac{\sqrt{3}}{3}$.

分析 根据诱导公式直接计算即可

解答 解:cos($\frac{5π}{6}$-α)=cos[π-($\frac{π}{6}$+α)]=-cos($\frac{π}{6}$+α)=-$\frac{\sqrt{3}}{3}$,
故答案为:-$\frac{\sqrt{3}}{3}$

点评 本题考查了诱导公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.若|x-1|+|x+2|>a对于x∈R均成立,则a的取值范围为(-∞,3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.a1=1,an+1=$\frac{{a}_{n}}{3{a}_{n}+1}$,则数列{an}的第6项是$\frac{1}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知点M的坐标为(5,θ),且tan θ=-$\frac{4}{3}$,$\frac{π}{2}$<θ<π,则点M的直角坐标为(-3,4).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.k>3是方程$\frac{x^2}{k-3}-\frac{y^2}{k+3}=1$表示双曲线的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.把0,1,2三个数字组成四位数,每个数字至少使用一次,则这样的四位数的个数为(  )
A.18B.24C.27D.36

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知等差数列{an}中,a1=1,前100项和S100=10000.
(1)求数列{an}的通项公式;
(2)设${b_n}={2^{{a_n}+1}}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设函数$f(x)=sin(2ωx+\frac{π}{3})+\frac{{\sqrt{3}}}{2}+a(ω>0)$,且f(x)的图象在y轴右侧的第一个最高点的横坐标为$\frac{π}{6}$.
(1)求ω的值;
(2)如果f(x)在区间$[-\frac{π}{3},\frac{5π}{6}]$上的最小值为$\sqrt{3}$,求a的值;
(3)若g(x)=f(x)-a,则g(x)的图象可由y=sinx(x∈R)的图象经过怎样的变换而得到?并写出g(x)的对称轴和对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在一圆柱中挖去一圆锥所得的工艺部件的三视图如图所示,则此工艺部件的表面积为(  )
A.(7+$\sqrt{5}$)πB.(7+2$\sqrt{5}$)πC.(8+$\sqrt{5}$)πD.(8+2$\sqrt{5}$)π

查看答案和解析>>

同步练习册答案