精英家教网 > 高中数学 > 题目详情
4.已知数列{an}中,a1=1,an+1=an-n,求an

分析 由已知数列递推式可得a2-a1=-1,a3-a2=-2,a4-a3=-3,…,an-an-1=-(n-1)(n≥2),然后利用累加法求得数列通项公式.

解答 解:由an+1=an-n,得:
an+1-an=-n,
则a2-a1=-1,a3-a2=-2,a4-a3=-3,…,an-an-1=-(n-1)(n≥2),
累加得,an-a1=-[1+2+3+…+(n-1)]=$-\frac{n(n-1)}{2}$,
∴${a}_{n}={a}_{1}-\frac{n(n-1)}{2}=1-\frac{n(n-1)}{2}=\frac{-{n}^{2}+n+2}{2}$(n≥2),
验证n=1时成立,
∴${a}_{n}=\frac{-{n}^{2}+n+2}{2}$.

点评 本题考查数列递推式,考查了累加法求数列的通项公式,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.函数f(x)=2sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的图象如图所示,则ω=2,φ=$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若复数z满足$\frac{1-i}{z}$=-i,其中i为虚数单位,则$\overline{z}$=1-i.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知平面上三点A、B、C满足|$\overrightarrow{AB}$|=$\sqrt{3}$,|$\overrightarrow{BC}$|=$\sqrt{5}$,|$\overrightarrow{CA}$|=2$\sqrt{2}$,则$\overrightarrow{AB}•\overrightarrow{BC}+\overrightarrow{BC}•\overrightarrow{CA}+\overrightarrow{CA}•\overrightarrow{AB}$的值等于-8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设x,y满足约束条件$\left\{\begin{array}{l}3x-y-6≤0\\ x-y+2≥0\\ x,y≥0\end{array}\right.$,若ax+by(a,b>0)的最大值是12,则a2+b2的最小值是$\frac{36}{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知sinα+cosα=$\frac{1}{3}$,则sinαcosα=-$\frac{4}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.展开($\sqrt{x}-\frac{1}{\sqrt{x}}$)5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.等比数列{an}的前n(n∈N*)项和为Sn,若S1=1,S2=3,则S3=(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知sinα+cosα=$\sqrt{2}$,α∈(0,π),则tanα=(  )
A.-1B.-$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{2}}{2}$D.1

查看答案和解析>>

同步练习册答案