精英家教网 > 高中数学 > 题目详情
4.已知函数f(x)=asinx+acosx+1-a,x∈[0,$\frac{π}{2}$].
(1)求曲线的对称轴方程;
(2)若f(x)的最大值为$\sqrt{2}$,求a的值.

分析 (1)将f(x)=asinx+acosx+1-a,a∈R,x∈[0,$\frac{π}{2}$]化为f(x)=$\sqrt{2}$asin(x+$\frac{π}{4}$)+1-a,对a分类讨论可求f(x)的对称轴方程;
(2)由x∈[0,$\frac{π}{2}$],可求(x+$\frac{π}{4}$)∈[$\frac{π}{4}$,$\frac{3π}{4}$],从而可求sin(x+$\frac{π}{4}$)∈[$\frac{\sqrt{2}}{2}$,1],结合题意可求a的值.

解答 解:(1)f(x)=asinx+acosx+1-a=$\sqrt{2}$asin(x+$\frac{π}{4}$)+1-a,
当a≠0时,x+$\frac{π}{4}$=kπ+$\frac{π}{2}$(k∈Z),即x=kπ+$\frac{π}{4}$(k∈Z),又x∈[0,$\frac{π}{2}$],
∴曲线的对称轴方程为x=$\frac{π}{4}$;
当a=0时,f(x)=1,同理可得曲线的对称轴方程为x=$\frac{π}{4}$;
综上,曲线的对称轴方程为x=$\frac{π}{4}$;
(2)由x∈[0,$\frac{π}{2}$],得(x+$\frac{π}{4}$)∈[$\frac{π}{4}$,$\frac{3π}{4}$],故sin(x+$\frac{π}{4}$)∈[$\frac{\sqrt{2}}{2}$,1],
①当a>0时,f(x)max=($\sqrt{2}$-1)a+1=$\sqrt{2}$,解得a=1;
②当a<0时,f(x)max=$\sqrt{2}$a×$\frac{\sqrt{2}}{2}$+1-a=1≠$\sqrt{2}$,即a<0不符合题意;
③当a=0时f(x)max=1≠$\sqrt{2}$,即a=0不符合题意;
综上所述,a=1.

点评 本题考查三角函数的最值,突出考查学生辅助角公式的应用,考查正弦函数的性质,分类讨论与转化的思想,综合性强,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点为F($\sqrt{3}$,0),长轴长为4.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设点P是圆x2+y2=b2上第一象限内的任意一点,过P作圆的切线方程与椭圆C在第一象限的交点为Q(x1,y1).求证:|PQ|+|FQ|为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知角α满足$\frac{1}{|sinα|}=\frac{1}{sinα}$,且lg(cosα)有意义,a=21-sinα,b=2cosα.c=2tanα
(1)判断角α所在象限;
(2)若角α的终边与单位圆相交于点M($\frac{3}{5}$,m),求m的值及比较a,b,c的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}满足a1=2,且an=2-$\frac{1}{{a}_{n-1}}$,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知x>0,y>0,$\frac{1}{x}+\frac{m}{y}$=1(m>0),若x+y-$\sqrt{{x}^{2}+{y}^{2}}$有最大值,则m的取值范围为(  )
A.($\frac{1}{2}$,2)B.[$\frac{1}{3}$,3]C.[$\frac{1}{4},4$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.计算:∫$\frac{1}{(x-1)(x-2)(x-3)}$dx.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知数列{an}满足a1=0,an+1=an+2n,那么a2005的值是(  )
A.2003×2004B.2004×2005C.20052D.2005×2006

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的一焦点F在抛物线y2=4x 的准线上,且点M(1,$-\frac{{\sqrt{2}}}{2}$)在椭圆上
(Ⅰ)求椭圆E的方程;
(Ⅱ)过直线x=-2上一点P作椭圆E的切线,切点为Q,证明:PF⊥QF.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{{\sqrt{15}}}{4}$,F1,F2是椭圆的两个焦点,P是椭圆上任意一点,且△PF1F2的周长是8+2$\sqrt{15}$
(1)求椭圆C的方程;
(2)设圆T:(x-t)2+y2=$\frac{4}{9}$,过椭圆的上顶点作圆T的两条切线交椭圆于E、F两点,当圆心在x轴上移动且t∈(1,3)时,求EF的斜率的取值范围.

查看答案和解析>>

同步练习册答案