精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)是偶函数,且x≥0时,f(x)=x2-2x+3,试求f(x)在R上的表达式,并画出图象,根据图象写出它的单调区间.

分析 设x<0则-x>0,利用已知的解析式和偶函数的性质求出x<0时的解析式,用分段函数的形式表示出来,根据二次函数的图象画出f(x)的图象,由图象求出f(x)的单调区间.

解答 解:设x<0,则-x>0,
∵x≥0时,f(x)=x2-2x+3,∴f(-x)=x2+2x+3,
∵函数f(x)是偶函数,∴f(x)=f(-x)=x2+2x+3,
∴f(x)=$\left\{\begin{array}{l}{{x}^{2}-2x+3,x≥0}\\{{x}^{2}+2x+3,x<0}\end{array}\right.$,
由二次函数的图象画出此函数的图象:
由图可得:函数f(x)的增区间是(-1,0)、(1,+∞),
减区间是(-∞,-1)、(0,1).

点评 本题考查利用函数的奇偶性求函数的解析式,二次函数的图象,以及分段函数的单调性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.对所有满足1≤m<n≤5的自然数m,n,方程x2+C${\;}_{n}^{m}$y2=1所表示的不同椭圆的个数为6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}的前n项和为Sn,且a1=$\frac{1}{2},{a_{n+1}}=\frac{n+1}{2n}{a_n}$.
(1)求{an}的通项公式;
(2)设bn=n(2-Sn),n∈N*,若bn≤λ,n∈N*恒成立,求实数λ的取值范围.
(3)设Cn=$\frac{{({2-{S_n}})}}{n(n+1)},n∈{N^*}$,Tn是数列{Cn}的前n项和,证明$\frac{3}{4}$≤Tn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在等比数列{an}中,已知a2=2,a5=16.
(1)求数列{an}的通项公式;
(2)若数列{bn}是首项为1,公差为1的等差数列,求数列{an+bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.由某个2×2列联表数据计算得随机变量K2的观测值k=6.879,则下列说法正确的是(  )
P(K2≥k00.400.250.150.100.050.0250.0100.0050.001
k00.7081.3232.0722.7063.8415.0246.6357.87910.828
A.两个分类变量之间有很强的相关关系
B.有99%的把握认为两个分类变量没有关系
C.在犯错误的概率不超过1.0%的前提下认为这两个变量间有关系
D.在犯错误的概率不超过0.5%的前提下认为这两个变量间有关系

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设a,b,c,d为正数,a+b+c+d=1,求a2+b2+c2+d2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图给出的是计算$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+…+$\frac{1}{20}$的值的一个程序框图,根据框图写出其判断条件.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知A,B为椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的左右顶点,P为椭圆上异于A,B的任意一点,直线AP,BP分别交椭圆的直线l:x=4于点M,N,则$\overrightarrow{AM}$•$\overrightarrow{BN}$的值为(  )
A.$\sqrt{3}$B.3C.3$\sqrt{3}$D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.二项式(1+sinx)6的展开式中二项式系数最大的一项的值为$\frac{5}{2}$,则x在$[{\frac{π}{2},π}]$内的值为$\frac{5π}{6}$.

查看答案和解析>>

同步练习册答案