【题目】如图,已知抛物线焦点为,过上一点作切线,交轴于点,过点作直线交于点.
(1)证明:;
(2)设直线,的斜率为,的面积为,若,求的最小值.
科目:高中数学 来源: 题型:
【题目】斐波那契数列满足: .若将数列的每一项按照下图方法放进格子里,每一小格子的边长为1,记前项所占的格子的面积之和为,每段螺旋线与其所在的正方形所围成的扇形面积为,则下列结论错误的是( )
A. B.
C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,曲线C的参数方程为(a或t为参数).以O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρ(cosθsinθ)=1.
(1)当t为参数,α时,判断曲线C与直线l的位置关系;
(2)当α为参数,t=2时,直线l与曲线C交于A,B两点,设P(1,0),求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:()的左右焦点分别为,点满足:,且.
(1)求椭圆C的标准方程;
(2)过点的直线l与C交于,不同的两点,且,问在x轴上是否存在定点N,使得直线,与y轴围成的三角形始终为底边在y轴上的等腰三角形.若存在,求定点N的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,.
(1)当时,求曲线在点处的切线方程;
(2)求函数在上的极值;
(3)设函数,若,且对任意的实数,不等式恒成立(e是自然对数的底数),求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着生活节奏的加快以及智能手机的普及,外卖点餐逐渐成为越来越多用户的餐饮消费习惯,由此催生了一批外卖点餐平台.已知某外卖平台的送餐费用与送餐距离有关(该平台只给5千米范围内配送),为调査送餐员的送餐收入,现从该平台随机抽取100名点外卖的用户进行统计,按送餐距离分类统计结果如表:
送餐距离(千米) | (0,1] | (1,2] | (2,3] | (3,4] | (4,5] |
频数 | 15 | 25 | 25 | 20 | 15 |
以这100名用户送餐距离位于各区间的频率代替送餐距离位于该区间的概率.
(1)若某送餐员一天送餐的总距离为100千米,试估计该送餐员一天的送餐份数;(四舍五入精确到整数,且同一组中的数据用该组区间的中点值为代表).
(2)若该外卖平台给送餐员的送餐费用与送餐距离有关,规定2千米内为短距离,每份3元,2千米到4千米为中距离,每份7元,超过4千米为远距离,每份12元.记X为送餐员送一份外卖的收入(单位:元),求X的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱柱中,四边形ABCD是边长等于2的菱形,,平面ABCD,O,E分别是,AB的中点,AC交DE于点H,点F为HC的中点
(1)求证:平面;
(2)若OF与平面ABCD所成的角为60°,求三棱锥的表面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com