精英家教网 > 高中数学 > 题目详情

【题目】如图,已知抛物线焦点为,过上一点作切线,交轴于点,过点作直线于点.

1)证明:

2)设直线的斜率为的面积为,若,求的最小值.

【答案】1)证明见解析;(2

【解析】

1)设过点相切的切线,与抛物线联立,利用可得,进而可得点坐标,再设直线,与抛物线联立,利用韦达定理可得答案;

2)利用(1)的结果可得,代入,可得的关系,再利用弦长公式和点到直线的距离公式求出和点的距离,则可表示出,利用换元法和求导求其最小值.

1)设过点相切的切线

联立,消去

,则

因为直线的斜率不为0

设直线,联立方程

2)由(1)得,则

整理得,即

时,点轴上方,必有,与矛盾

所以必有,则

的距离

,令

,则

则对于函数

则函数上单调递增,在上单调递减,

的最小值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,函数.

(Ⅰ)判断函数的单调性;

(Ⅱ)若时,对任意,不等式恒成立,求实数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】斐波那契数列满足: .若将数列的每一项按照下图方法放进格子里,每一小格子的边长为1,记前项所占的格子的面积之和为,每段螺旋线与其所在的正方形所围成的扇形面积为,则下列结论错误的是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,曲线C的参数方程为at为参数).O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρcosθsinθ)=1.

1)当t为参数,α时,判断曲线C与直线l的位置关系;

2)当α为参数,t2时,直线l与曲线C交于AB两点,设P10),求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,椭圆的左、右焦点分别为,已知都在椭圆上.

1)求椭圆的方程;

2)过点的直线与椭圆相交于两点,且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C()的左右焦点分别为,点满足:,且.

1)求椭圆C的标准方程;

2)过点的直线lC交于不同的两点,且,问在x轴上是否存在定点N,使得直线y轴围成的三角形始终为底边在y轴上的等腰三角形.若存在,求定点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求曲线在点处的切线方程;

2)求函数上的极值;

3)设函数,若,且对任意的实数,不等式恒成立(e是自然对数的底数),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着生活节奏的加快以及智能手机的普及,外卖点餐逐渐成为越来越多用户的餐饮消费习惯,由此催生了一批外卖点餐平台.已知某外卖平台的送餐费用与送餐距离有关(该平台只给5千米范围内配送),为调査送餐员的送餐收入,现从该平台随机抽取100名点外卖的用户进行统计,按送餐距离分类统计结果如表:

送餐距离(千米)

01]

12]

23]

34]

45]

频数

15

25

25

20

15

以这100名用户送餐距离位于各区间的频率代替送餐距离位于该区间的概率.

1)若某送餐员一天送餐的总距离为100千米,试估计该送餐员一天的送餐份数;(四舍五入精确到整数,且同一组中的数据用该组区间的中点值为代表).

2)若该外卖平台给送餐员的送餐费用与送餐距离有关,规定2千米内为短距离,每份3元,2千米到4千米为中距离,每份7元,超过4千米为远距离,每份12元.记X为送餐员送一份外卖的收入(单位:元),求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱柱中,四边形ABCD是边长等于2的菱形,平面ABCDOE分别是AB的中点,ACDE于点H,点FHC的中点

1)求证:平面

2)若OF与平面ABCD所成的角为60°,求三棱锥的表面积.

查看答案和解析>>

同步练习册答案