精英家教网 > 高中数学 > 题目详情
7.已知点A是单位圆与x轴正半轴的交点,点B在第二象限.记∠AOB=θ且$sinθ=\frac{4}{5}$.则$\frac{{sin({π+θ})+2sin({\frac{π}{2}-θ})}}{{2tan({π-θ})}}$=(  )
A.$\frac{3}{20}$B.$\frac{3}{4}$C.$-\frac{3}{10}$D.$-\frac{3}{4}$

分析 利用已知条件判断θ的值,通过诱导公式化简求解即可.

解答 解:点A是单位圆与x轴正半轴的交点,点B在第二象限.记∠AOB=θ且$sinθ=\frac{4}{5}$.
可得θ∈($\frac{π}{2},π$).cos$θ=-\frac{3}{5}$,tanθ=$-\frac{4}{3}$
则$\frac{{sin({π+θ})+2sin({\frac{π}{2}-θ})}}{{2tan({π-θ})}}$=$\frac{-sinθ+2cosθ}{-2tanθ}$=$\frac{-\frac{4}{5}-2×\frac{3}{5}}{-2×(-\frac{4}{3})}$=$-\frac{3}{4}$.
故选:D.

点评 本题考查三角函数化简求值,诱导公式以及同角三角函数基本关系式的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.设函数f(x)=logax,则f(a+1)与f(2)的大小关系是(  )
A.f(a+1)>f(2)B.f(a+1)<f(2)C.f(a+1)=f(2)D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数f(x)=x2-3x+2的零点有2个.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知椭圆$\frac{y^2}{9}$+x2=1,过点P($\frac{1}{2}$,$\frac{1}{2}$)的直线与椭圆交于A、B两点,且弦AB被点P平分,则直线AB的方程为(  )
A.9x+y-5=0B.9x-y-4=0C.2x+y-2=0D.x+y-5=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知O为坐标原点,向量$\overrightarrow{OA}=({sinα,1}),\overrightarrow{OB}=({cosα,0}),\overrightarrow{OC}=({-sinα,2})$,点P满足$\overrightarrow{AB}=\overrightarrow{BP}$
(1)记函数$f(α)=\overrightarrow{PB}•\overrightarrow{CA},α∈({-\frac{π}{8},\frac{π}{2}})$,讨论函数f(α)的单调性,并求其值域;
(2)若O,P,C三点共线,求$|{\overrightarrow{OA}+\overrightarrow{OB}}|$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在极坐标系中,直线θ=$\frac{π}{6}$(ρ∈R)被圆ρ=4COSθ截得的弦长为$2\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.如图,函数$f(x)=Asin{(ωx+φ)_{\;}}(A>0,ω>0,|φ|<\frac{π}{2})$与坐标轴的三个交点P,Q,R满足P(2,0),∠PQR=$\frac{π}{4}$,M为QR的中点,PM=2$\sqrt{5}$,则A的值为-$\frac{16\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知$\overrightarrow a=(2,\;1)$,$\overrightarrow b=(1,\;-2)$,若$m\overrightarrow a+n\overrightarrow b=(9,\;-8)(m,n∈R)$,则m-n的值为(  )
A.2B.-2C.3D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在121个学生中,一年级有25人,二年级有36人,三年级有60个,现抽取容量为20的样本.用系统抽样法:先随机去掉一人,再从剩余人员中抽取容量为20的样本,整个过程中每个体被抽取到的概率是(  )
A.$\frac{1}{6}$B.$\frac{1}{36}$
C.$\frac{20}{121}$D.不能确定,与去掉的人有

查看答案和解析>>

同步练习册答案