精英家教网 > 高中数学 > 题目详情
8.在等差数列{an}中,a1=-2011,其前n项的和为Sn.若$\frac{{S}_{2010}}{2010}$-$\frac{{S}_{2008}}{2008}$=2,则S2011=(  )
A.-2010B.2010C.2011D.-2011

分析 Sn是等差数列的前n项和,可得数列$\left\{{\frac{S_n}{n}}\right\}$是首项为a1的等差数列,利用通项公式即可得出.

解答 解:∵Sn是等差数列的前n项和,∴数列$\left\{{\frac{S_n}{n}}\right\}$是首项为a1的等差数列;
由$\frac{{S}_{2010}}{2010}$-$\frac{{S}_{2008}}{2008}$=2,则该数列公差为1,
∴$\frac{{S}_{2011}}{2011}$=-2011+(2011-1)=-1,
∴S2011=-2011.
故选:D.

点评 本题考查了等差数列的通项公式及其求和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.设平面内有与两定点A1(-2,0),A2(2,0)连接的斜率之积等于-$\frac{1}{4}$的点的轨迹,A1,A2两点所成的曲线为C.
(1)求曲线C的方程;
(2)设直线l经过曲线C的一个焦点,直线l与曲线C相交于A,B两点,求证:|AB|min=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(1)解不等式:$\sqrt{x-1}$+2x≤5
(2)解关于x的不等式:$\frac{ax-1}{x-2}$>$\frac{a}{2}$(a∈R).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知向量$\overrightarrow{a}$=(5cosα,4),$\overrightarrow{b}$=(3,4tanα),其中α∈($\frac{π}{2}$,π).
(1)若$\overrightarrow{a}$∥$\overrightarrow{b}$,求sin2α的值;
(2)若|$\overrightarrow{a}$|=5,向量$\overrightarrow{c}$=(2,0),求证:($\overrightarrow{a}$+$\overrightarrow{b}$)⊥$\overrightarrow{c}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=2lnx+$\frac{a}{2}$x2-(2a+1)x.
(1)当a=1时,求f(x)在(1,f(1))处的切线方程;
(2)若a>0,求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若M={x|log2x≤1},N={x|x2-2x≤0},则“f(x)>0在x∈M上恒成立”是“f(x)>0在x∈N上恒成立”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要的条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知$\overrightarrow{BA}$=($\frac{1}{2}$,$\frac{{\sqrt{3}}}{2}$),$\overrightarrow{BC}$=($\frac{{\sqrt{3}}}{2}$,$\frac{1}{2}$),则<$\overrightarrow{BA}$,$\overrightarrow{BC}$>=(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.盒中有大小相同的5个白球和3个黑球,从中随机摸出3个球,记摸到黑球的个数为X,则P(X=2)=$\frac{15}{56}$,EX=$\frac{9}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设集合A={x||4x-1|<9,x∈R},B={x|$\frac{x}{x+3}$≥0,x∈R},则∁RA∩B=(  )
A.(-3-2]B.(-3-2]∪[0,$\frac{5}{2}$)C.(-∞,-3]∪[$\frac{5}{2}$,+∞)D.(-∞,-3)∪[$\frac{5}{2}$,+∞)

查看答案和解析>>

同步练习册答案