精英家教网 > 高中数学 > 题目详情
7.底面是边长为1的正方形,侧面是等边三角形的四棱锥的外接球的体积为(  )
A.$\frac{\sqrt{2}π}{3}$B.$\frac{\sqrt{3}π}{3}$C.$\frac{\sqrt{3}π}{2}$D.$\frac{2\sqrt{2}π}{3}$

分析 画出图形,求出外接球的半径即可求出结果.

解答 解:底面ABCD外接圆的半径是$\frac{\sqrt{2}}{2}$,即AO=$\frac{\sqrt{2}}{2}$.
则PO=$\sqrt{1-\frac{1}{2}}$=$\frac{\sqrt{2}}{2}$,
∴四棱锥的外接球的半径为:$\frac{\sqrt{2}}{2}$,
∴四棱锥的外接球的体积为$\frac{4}{3}π•(\frac{\sqrt{2}}{2})^{3}$=$\frac{\sqrt{2}π}{3}$.
故选:A.

点评 本题考查几何体的外接球的体积的求法,考查空间想象能力以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.设i为虚数单位,复数z满足z(2-i)=i3,则复数z的虚部为$-\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知等比数列{an}的前n项和为Sn,且$6{S_n}={3^{n+1}}+a$(a∈N+).
(Ⅰ)求a的值及数列{an}的通项公式;
(Ⅱ)设${b_n}=\frac{{{{(-1)}^{n-1}}(2{n^2}+2n+1)}}{{{{({{log}_3}{a_n}+2)}^2}{{({{log}_3}{a_n}+1)}^2}}}$,求{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.阅读下列程序框图,输出的结果s的值为(  )
A.$\frac{{\sqrt{3}}}{2}$B.0C.$-\frac{{\sqrt{3}}}{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知a>0,b>0,$\frac{2}{a}+\frac{1}{b}=\frac{1}{4}$,若不等式2a+b≥4m恒成立,则m的最大值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.(1)计算:sin$\frac{25π}{6}$+cos$\frac{25π}{3}$+tan(-$\frac{25π}{4}$)
(2)化简:$\frac{{sin(5π-α)cos(α+\frac{3}{2}π)cos(π+α)}}{{sin(α-\frac{3}{2}π)cos(α+\frac{π}{2})tan(α-3π)}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列说法正确的是(  )
A.三角形的内角是第一象限角或第二象限角
B.第一象限的角是锐角
C.第二象限的角比第一象限的角大
D.角α是第四象限角,则$2kπ-\frac{π}{2}<α<2kπ(k∈z)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若复数z满足$\frac{z+2i}{z}$=2+3i,其中i是虚数单位,则$\overline z$=(  )
A.$\frac{2}{5}$+$\frac{3}{5}$iB.$\frac{3}{5}$+$\frac{2}{5}$iC.$\frac{3}{5}$+$\frac{1}{5}$iD.$\frac{3}{5}$-$\frac{1}{5}$i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=ex+ax,g(x)=exlnx(e是自然对数的底数).
(1)若对于任意x∈R,f(x)>0恒成立,试确定负实数a的取值范围;
(2)当a=-1时,是否存在x0∈(0,+∞),使曲线C:y=g(x)-f(x)在点x=x0处的切线斜率与f(x)在R上的最小值相等?若存在,求符合条件的x0的个数;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案